
Chemistry 360

Organic Chemistry II

Report Book 2019-21

Athabasca University 🛛 🗖

Course team

Report Book Authors:	Dr. Dietmar Kennepohl, Dr. Lawton Shaw, Dr. Scott McGavin, Mr. Robert D. Carmichael, and Dr. Lois M. Browne
Report Book Contributors:	Ms. Aimee Caouette
AU Lab Manager	Rafael Hakobyan
Course Professor:	Dr. Dietmar Kennepohl

Every effort has been taken to ensure that these materials comply with the requirements of copyright clearances and appropriate credits. Athabasca University will attempt to incorporate in future printings any corrections which are communicated to it.

The inclusion of any material in this publication is strictly in accord with the consents obtained and Athabasca University does not authorize or license any further reproduction or use without the consent of the copyright holder. Athabasca University students are allowed to make print copies of this document.

Athabasca University 2005, 2006, 2009, 2012, 2016, 2019 Printed in Canada

CHEM 360 Report Book Contents

General Introduction	1
Report Book Structure	3
Acknowledgements	4
Experiment 10 Fisher Esterification Reaction	5
Pre-lab Questions	5
Experiment 10 Lab Report	7-15
Experiment 11 Reactions of Common Functional Groups: Part II: Alcohols and Aryl Halides Pre-lab Questions Experiment 11 Lab Report	16 16 18-24
Experiment 12 Reduction of Benzophenone	25
Pre-lab Questions	25
Experiment 12 Lab Report	27-35
Experiment 13 Aldol Condensations	36
Pre-lab Questions	36
Experiment 13 Lab Report	38-46
Experiment 14 ¹ H-NMR Tutorial	47
Pre-lab Questions	47
Experiment 14 Lab Report	50
Experiment 15 Reactions of Common Functional Groups Part III: Aldehydes and Ketones Pre-lab Questions Experiment 15 Lab Report	51 51 53-60

CHEM 360 Report Book Contents (cont.)

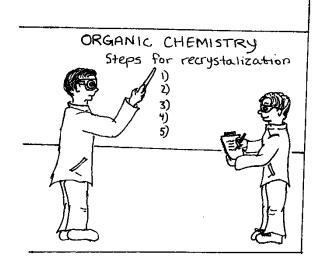
Experiment 16 Grignard Reaction	61
Pre-lab Questions	61
Experiment 16 Lab Report	63-73
Experiment 17 Multi-step Synthesis of Benzocaine	74
Pre-lab Questions	74
Experiment 17 Lab Report	76-89
Table of Reagents	90

Introduction


Welcome to Organic Chemistry 360's Laboratory Report Workbook

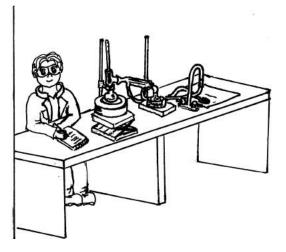
This Report Book, along with the 'Chemistry 360 Lab Manual', will help you prepare for four-five days straight of supervised lab instruction. All preparatory work in this report book (~12 h to finish, see list on page 3), may be completed and shown to the Chemistry Lab Co-ordinator / Lab Instructor prior to beginning the labs.

In order to successfully complete the laboratory component, please be aware of the following 4 step process of instruction. It is the intention of this Chem360 Report Workbook to provide you with the means of completing all four steps.


Step 1: First we tell you what you are going to do.

Find out by reading the lab manual, doing the pre-lab questions in this report book, and filling out the Table of Reagents etc., i.e., preparing for the labs at home. (By doing so you are able to work more efficiently in the lab and the over-all time spent in the supervised lab can be the usual 32 hours.)

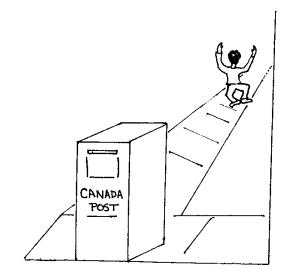
Step 2: Next we show you how to do it.


When you come to the lab, a lab instructor will give a safety orientation, followed by a series of mini lab lectures on each experiment. Various techniques will be demonstrated and you will be shown how to handle chemicals, dispose of hazardous waste, and operate the equipment.

Introduction

Step 3: Lab Time: Now you do what you've read, been told, and shown.

This is the time you spend in the lab performing your experiments, making your products, and recording your results in this report workbook



Step 4: Finally, you tell us what you did.

This is the report writing stage. Actually most of your reports will have been written while in the lab. At home you will only have to do your calculations, write your discussion and conclusion and answer the

questions at the end of each experiment.

Introduction

Report Book Structure and How to Prepare for the Labs:

This CHEM360 Report Book is to be used in conjunction with the CHEM360 Organic Chemistry II Lab Manual. It consists of an Introduction, Experiment Report Forms, Table of Reagents and Unknown Spectra. The reports are to be **completed one month** after of the lab session you attended. As a safety precaution, it is advisable to photocopy your reports before mailing them to your tutor for marking. Note: the marked reports are not returned to you.

How to best do the Report Book Exercises

- 1. First read through the lab manual introduction, and then answer the pre-lab questions for each experiment.
- 2. Complete the Objectives in the Experiment Report.
- 3. Complete the Procedure (Refer to lab manual pages) and make a flowchart if necessary.
- 4. Complete the Table of Reagents for each experiment (detach a copy of the TOR to avoid flipping back and forth)
- 5. You are now ready to come to the lab and do the experimental work.

Note: Each experiment in the report book has the following headings:

Report Book Heading	Purpose and Use
1. Experiment Prelab Questions	Answer these questions to help you prepare and
	understand what you are doing in the lab. In order to
	answer these questions you will have to consult the
	CHEM360 Lab Manual, and to read the 'Introduction
	to Concept', and 'Background Information' sections of
	this manual.
	To get feedback, you may submit them to the lab
	coordinator before the lab session begins.*
2. Objectives	Lists what you should learn from the lab. (see also lab
	manual). Use this information to fill in 'Objectives' in
	your Lab Write-up. When appropriate, write out any
	chemical reactions.
3. Introduction	Briefly state how the objectives of the experiment will
	be achieved and provide the relevant background
	information.
4. Procedure	Refer to the lab manual and only note any modifications
	or changes. Fill out the Table of Reagents**. Use the
	flowchart or procedural step table to record your work
	and observations. No need to do it both ways.
The sections of your report shown below are completed	
sessio	
5. Results	While doing or immediately after your experiment,
	record your results in this section of the report.
6. Discussion and Conclusion	As soon after the lab as possible, discuss your results in
	light of the objectives, and make the appropriate
	conclusions. Remember to discuss sources of potential
	error and loss.
7. Post Lab Questions	Answer these questions to prove you understand what
	you did in the lab. To be completed after the
	experiment is finished. Submit your answers by mail
*CHEM260 Proleb guagtions will soon be available online a	along with the Course Evaluation.

*CHEM360 Prelab questions will soon be available online at: <u>http://science.pc.athabascau.ca/chem360.nsf</u> **CHEM360 Reagents is available online at: http://science.pc.athabascau.ca/chem360.nsf

Acknowledgements:

The authors wish to especially thank Ms. Aimee Caouette for all the artwork. Athabasca University also wishes to thank Drs. K. Tanabe and T. Tamura and for their permission to use the IR and 1H-NMR Spectra used in our Lab Manual and Report Book (pp. 15, 35, 46, 60, and 73). They were obtained from the SDBS web site: http://www.aist.go.jp/RIODB/SDBS/.

Each experiment in CHEM360 has been modified and rewritten from other sources, keeping the particular needs of Athabasca University students in mind. The format of this Report Book have been checked in our Athabasca laboratories by Dr. Lawton Shaw, Klaus Thomson, Nyron Jaleel, and Robert Carmichael. Special thanks to Ms. Aimee Caouette for her help on the Infrared Tutorial (Summer 1999). Also thanks to Mr. Douglas Woudstra and Mr. James Taylor (CHEM360 students 2004-05) for their helpful suggestions to improve the report book. The comments and suggestions received from all the individuals mentioned above were greatly appreciated by the Course Co-ordinator.

The following sources are also hereby acknowledged:

L.M. Browne, 2005. *Laboratory Report Book, Chemistry 161*, University of Alberta. L.M. Browne, 2005. *Laboratory Report Book, Chemistry 163*, University of Alberta.

Lehman, J.W. 1999. *Operation Organic Chemistry*: A Problem-Solving Approach to the Laboratory Course, 3rd ed., Prentice Hall, New Jersey.

Mayo, D.W., R.M. Pike, and S.S. Butcher. 1989. *Microscale Organic Laboratory*, 2nd ed., John Wiley and Sons, Toronto, pp.229-232.

McMurry, J., 1992. Organic Chemistry, 3rd ed., Brooks/Cole Publishing Company, Pacific Grove, CA.

Weast, R.C. et al, 1974. CRC Handbook of Chemistry and Physics, 65th ed., CRC Press, Inc., Boca Raton, FL.

Introduction

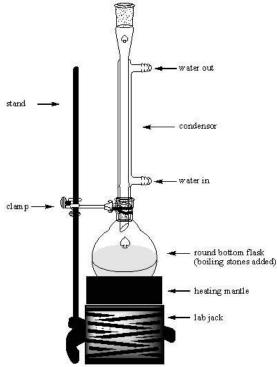
Date:_____

CHEM360 Experiment 10 Report

Student Name:

ID Number:

Experiment 10 Prelab Questions:


Lab Safety

1.

- What are the hazards of working with concentrated acids like glacial acetic acid and sulfuric acid?
 - a) They are both extremely flammable
 - b) They are only mildly corrosive and no significant precautions are needed
 - c) Boiling these highly corrosive acids increases the danger to the experimenter, especially if the reaction flask should crack and break during heating

Equipment Preparation

- 2. Why must the condenser be 'clean and dry' prior to use?
 - a) Clean and dry glassware automatically guarantees a higher yield
 - b) Water is a by-product of the reaction and having 'wet glassware' will slow the reaction down
 - c) Chemists are just neat
- 3. The following diagram for the 'reflux apparatus' used in Experiment 10 is correctly labelled.
 - a) True
 - b) false

Reagent Preparation

- 4. What are the two starting reagents used in a Fisher Esterification?
 - a) carboxylic acid and a ketone
 - b) alcohol and an ester
 - c) alcohol and a carboxylic acid
 - d) carboxylic acid and an ester

Reaction

- 5. Is the Fisher esterification reaction reversible?
 - a) yes
 - b) no
- 6. How long must you 'reflux the reaction' in order to maximize the amount of product formed?
 - a) 20 min.
 - b) 20-40 min.
 - c) 60 min. or more (The longer the better!)
- 7. What acts as the nucleophile (Nu), and what acts as the electrophile (E) in this reaction?
 - a) Nu = sulphuric acid, E = acetic acid
 - b) Nu = isoamyl alcohol, E = acetic acid (protonated form)
 - c) Nu = isoamyl alcohol, E = acetic acid
 - d) Nu = acetic acid, E = isoamyl acetate

Reaction Workup

- 8. What gas is evolved during the reaction workup phase, when you wash the crude ester with 5% Na₂CO₃ (Procedure step C-5)?
 - a) H_{2 (g)}
 - b) N_{2 (g)}
 - c) $O_{2(g)}$
 - d) CO_{2 (g)}

Product Characterization

- 9. How is the ester product purified and characterized?
 - a) Yield, refractive index, % yield, infrared spectral analysis
 - b) Boiling point, refractive index, and infrared spectral analysis
 - c) Yield, boiling point, refractive index, % yield, and infrared spectral analysis
- 10. What major differences in absorption bands would you expect to see in the infrared spectra of isoamyl alcohol, and isoamyl acetate, the ester product?
 - a) Broad 3300 cm⁻¹ absorption for alcohol, sharp \sim 1740 cm⁻¹ C=O of carbonyl in the ester
 - b) Sharp ~2900 cm⁻¹ absorption(s) for sp³ C-H, no ~2900 cm⁻¹ absorption for sp³ C-H in ester.
 - c) Sharp 3300 cm⁻¹ absorption for alcohol, broad \sim 1740 cm⁻¹ C=O of carbonyl in the ester
 - d) Sharp ~ 1200 cm⁻¹ absorption for C-O of alcohol, none for the ester

Exp.10

CHEM360 Experiment 10 Report

Date:_____

Student Name:_____

ID Number:_____

Title:

Objective(s):

Equation(s): (General and specific reaction, draw structures, and provide names)

Introduction:

Exp.10

Procedure: (Reference: use proper format. Any Changes/Modifications?)

Procedural Step	Observations/Comments/Inferences
Record amounts of reagents used.	

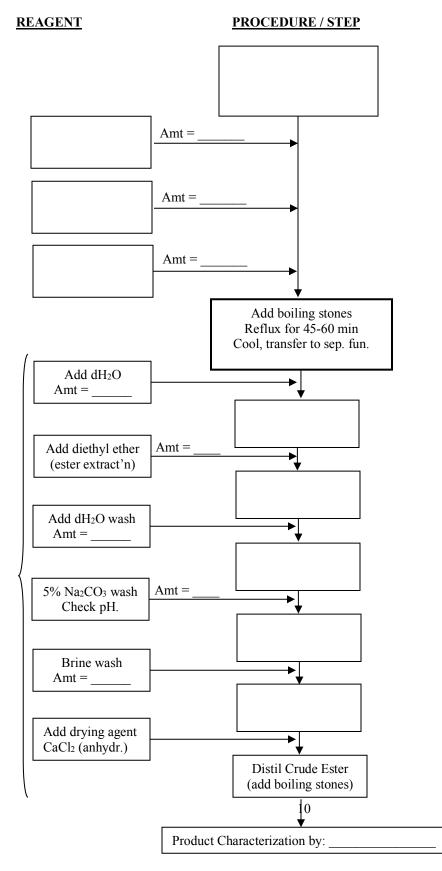

Procedure for the Fisher esterification of acetic acid with isoamyl alcohol.

Table 10.1	Table of Reagents fo	r Experiment 10	Fisher Esterification.

Reagent	Formula	Mwt. (g/mol)			Bp* (°C)	Haz. Properties	
Acetic acid, glacial (conc.) 17.4 M							
Isoamyl alcohol (3-methyl -1-butanol)	(CH ₃) ₂ CH(CH ₂) ₂ OH	88.15			130	Irritant	
Sulfuric acid, conc. 18 M	H ₂ SO ₄		1.840				
Distilled water	H ₂ O	18.02	1.000	0	100	none	
Diethyl ether							
5% sodium carbonate (aq)	Na ₂ CO _{3 (aq)}						
Sat. sodium chloride (aq) (brine)	NaCl (aq)						
Calcium chloride (anhydr)	CaCl ₂						
acetone, wash							
Isoamyl acetate	CH ₃ CO ₂ C ₅ H ₁₁	130.19			142		

*find and record either the melting point if the reagent is a solid at room temperature, or the boiling point if the reagent is a liquid at room temperature.

EXPERIMENT 10 FLOW CHART

Exp.10

OBSERVATION

Experiment 10 Results:

 Table 10.2. Summary Table of Observations (this table is optional. Use only to tidy up observations if necessary from the previous pages. Otherwise just say "see previous pages 9-10."):

Procedural Step	Comment or Observation and Inference

Table 10.3. Table of Product Data for Isoamyl acetate, Fisher Esterification Product.

Table 10.3. presents the summary of the results of the experiment. The calculations for limiting reagent, theoretical yield and percent yield are shown below the table. Note: ______ was found to be the limiting reagent.

	Yield Mass (g)	Appearance of Liquid	Boiling Pt.* (°C)	Refractive Index n _D obs.	Refractive Index (n_D^{20})	Theoretical Yield (g)	% Yield
Isoamyl acetate							

*Corrected for barometric pressure effects using the formula...

[^]Corrected to 20°C using the formula:

Limiting Reagent and Theoretical Yield Calculation:

Moles of acetic acid used in the reaction =

Moles of isoamyl alcohol used in the reaction =

Theoretical Yield of iosamyl acetate =

% Yield Calculation:

Table 10.4. Tabulation of Characteristic Infrared Absorptions for Starting regents and Product.

Table 10.4 contains the results of the Infrared Spectral Analyses for the isoamyl alcohol, acetic acid, and isoamyl acetate as obtained by thin film in a FTIR. See also attached spectra for peak numbering and identification.

Isoamyl alcohol	Peak Code#	Wavenumber (cm ⁻¹)	Peak Shape (sharp, broad)	Peak Intensity (strg., med., or weak)	Functional Group Indicated
>3000 cm ⁻¹ Region					
3000-2000 cm ⁻¹ Region					
2000-1400 cm ⁻¹ Region					
Fingerprint Region					

Functional Groups Absent:

Acetic acid	Peak Code#	Wavenumber (cm ⁻¹)	Peak Shape (sharp, broad)	Peak Intensity (strg,, med., or weak)	Functional Group Indicated
>3000 cm ⁻¹ Region					
3000-2000 cm ⁻¹ Region					
2000-1400 cm ⁻¹ Region					
Fingerprint Region					

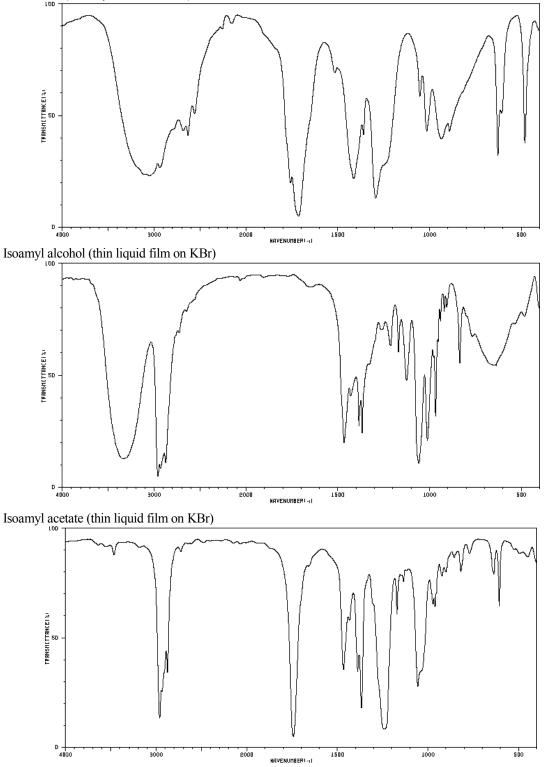
Functional Groups Absent:

Isoamyl acetate	Peak Code#	Wavenumber (cm ⁻¹)	Peak Shape (sharp, broad)	Peak Intensity (strg., med., or weak)	Functional Group Indicated
>3000 cm ⁻¹ Region					
3000-2000 cm ⁻¹ Region					
2000-1400 cm ⁻¹ Region					
Fingerprint Region					

Functional Groups Absent:

Discussion: Comments on reasons for yield (high or low), purity (high or low), sources of error, infrared spectrum results:

Conclusion:


Structure of Product

Experiment 10 Post Lab Questions:

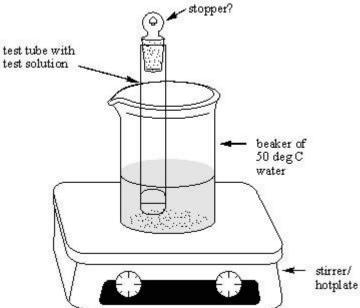
- 1. If the cost of **both** the alcohol and carboxylic acid were prohibitive, how would you maximize the yield of your Fischer esterification product while keeping costs down?
- 2. Why did you wash your product with water (3X), before washing it with the solution of sodium hydrogen carbonate? What was the purpose of washing with sodium hydrogen carbonate?
- 3. Explain the function of the acid catalyst in a Fisher esterification reaction.

4. What would the reactants be to produce isoamyl valerate via Fischer esterification reaction?

Acetic acid (thin liquid film on KBr)

CHEM360 Experiment 11 Report

Student Name:


ID Number:

Date:_____

Experiment 11 Prelab Questions:

Lab Safety

- 1. Should you stopper the test tubes prior to heating the tubes in the Ethanolic Silver Nitrate and Sodium Iodide/Acetone Tests?
 - a) Yes. You must stopper the test tubes to prevent evaporation of the test compound
 - b) No. You should never heat closed vessel as it may explode!

Equipment Preparation

- 2. Should the test tubes used in this experiment be clean and dry prior to use?
 - a) yes
 - b) no

Reagent Preparation

- 3. What oxidizing agent is used to detect primary and secondary alcohols, but not tertiary alcohols?
 - a) sulphuric acid
 - b) sodium dichromate
 - c) mixture of sulphuric acid and sodium dichromate
 - d) Lucas reagent

Exp.11

Reaction

- 4. What is the organic product of the reaction of Lucas reagent with an alcohol?
 - a) ketone
 - b) silver halide
 - c) water
 - d) alkyl halide
- 5. What type of alcohol would be positive in both the Dichromate and Lucas Reagent tests?
 - a. phenol
 - b) primary
 - c) secondary
 - d) tertiary

$6. \qquad S_N1 \text{ stands for}?$

- a) substitution nucleophilic unimolecular
- b) substitution nucleophilic bimolecular
- c) substitution nucleophilic first
- 7. $S_N 2$ stands for?
 - a) substitution nucleophilic unimolecular
 - b) substitution nucleophilic bimolecular
 - c) substitution nucleophilic second
- 8. Why is the silver nitrate test a good one to observe S_N1 reaction mechanism behaviour?
 - a) A positive reaction shows a change of color and is easily distinguished from a negative reaction
 - b) precipitates that form are easily seen in positive tests
 - c) the gas produced is easily seen in positive tests
- 9. Why is the sodium iodide in acetone test a good one to observe S_N2 reaction mechanism behaviour?
 - a) A positive reaction shows a change of color and is easily distinguished from a negative reaction
 - b) precipitates that form are easily seen in positive tests
 - c) the gas produced is easily seen in positive tests

Cleanup

- 10. What should be done with the completed test solutions?
 - a) they should be rinsed into the Halogentated organic waste container
 - b) they can be rinsed down the drain
 - c) store them in the fumehood

Exp.11

CHEM360 Experiment 11 Report

Date:_____

Student Name:_____

ID Number:_____

Title:

Objective(s):

General Equation(s): (structures and names)

Procedure: (Ref:) Changes/Modifications?

Table 11.1. Table of Reagents for Experiment 11.

Reagent	Formula	Mwt.	Vol/Mass	d	mp	bp	Haz. Properties
1-butanol	C ₄ H ₉ OH	74.12	4 drops	0.810	-89.5	117-118	Flamm., Irritant
2-butanol	C4H9OH	74.12	4 drops	0.807		100	Flamm., Irritant
2-methyl-2-propanol	C4H9OH	74.12	4 drops	0.7887	25.5	82.3	Flamm., Irritant
Cyclohexanol	C ₆ H ₁₁ OH	100.16	4 drops	0.9624	25.1	161.1	Irritant, Hygroscopic
1-chlorobutane	C4H9Cl	92.57	8 drops	0.8862	-123	78.4	Flammable
2-chlorobutane	C4H9Cl	92.57	8 drops	0.8732	-131	68.2	Flammable
2-chloro-2-methylpropane	C4H9Cl	92.57	8 drops	0.8420	-25.4	52	Flammable
1-bromobutane	C4H9Br	136.9	8 drops	1.2758	-112	101.6	Flammable, Irritant
2-bromobutane	C4H9Br	136.9	8 drops	1.2585	-112	91.2	Flammable, Irritant
Chlorobenzene	C ₆ H ₅ Cl	122.4	8 drops	1.1058	-45.6	132	Flammable, Irritant
benzyl chloride	C ₆ H ₅ CH ₂ Cl	126.59	8 drops	1.1002	-39	179.3	Toxic, Cancer susp.agent
3-chloro-1-butene	C4H7Cl	90.55	8 drops	0.8978		64-65	Flamm., Lachrymator
Bromocylclohexane	C ₆ H ₁₁ Br	163.06	8 drops	1.3359	-56.5	166.2	Flammable, Irritant
Bromocyclopentane	C ₅ H ₉ Br	149.04	8 drops	1.3873		136.7	Flammable, Irritant
β-bromostyrene	C ₆ H ₅ CHCHBr	183.05	8 drops	1.4269	7	219	Irritant
sodium dichromate	Na ₂ Cr ₂ O ₇	261.6	12 mL				Toxic, Cancer susp.agent
sulfuric acid	H ₂ SO ₄	98.08					Corrosive, Toxic, Oxidizer
Lucas reagent	Solution	of ZnCl ₂ and I	HCl				Toxic, Irritant
zinc chloride, anhydrous	ZnCl ₂	136.28		2.91	283	732	Corrosive, Toxic
hydrochloric acid, conc.	HC1	36.46		1.20		(110)	Corrosive, Highly toxic
sodium iodide	NaI	149.9					Mosit. Sens., Irritant
silver nitrate	AgNO ₃	169.8					Highly toxic, Oxidizer
nitric acid	HNO3	63.01		1.400			Corrosive, Oxidizer
Acetone	CH ₃ COCH ₃	58.09		0.818		56.5	Flammable, Irritant
ethanol	CH ₃ CH ₂ OH	46.07		0.785		78.5	Flammable, Poison

Experiment 11 Part A Results: Reactions of Alcohols (1°, 2°, and 3°)

	1. Alcohol Oxidation by Sodium Dichromate						
Test Substance	Observation	Inference	Equation				
1-butanol							
2-butanol							
cyclohexanol							
2-methyl-2-propanol							

	2. Lucas Reagent Test							
Test Substance	Observation	Inference	Equation					
1-butanol								
2-butanol								
cyclohexanol								
2-methyl-2-propanol								

Experiment 11 Part B Results: Reactions of Alkyl Halides

Test Substance Observation Inference Equation 1-chlorobutane - - - 2-chloro-2- methylpropane - - - 1-bromobutane - - - 2-bromobutane - - - 3-bromobutane - - - Benzyl chloride - - - Bromocyclohexane - - - Bromocyclopentane - - - β-bromostyrene - - -		Silver Nit	trate Test (S _N 1 Mech	anism)
2-chlorobutane	Test Substance	Observation	Inference	Equation
2-chloro-2- methylpropane 2-bromobutane 1-bromobutane 2-bromobutane 2-bromobutane 2-bromobutane Chlorobenzene 2-bromobutane Benzyl chloride 2-bromocyclohexane Bromocyclopentane 2-bromocyclopentane	1-chlorobutane			
methylpropane Image: Chorobutane 2-bromobutane Image: Chorobenzene Chlorobenzene Image: Chorobenzene Benzyl chloride Image: Chorobenzene 3-chloro-1-butene Image: Chorobenzene Bromocyclohexane Image: Chorobenzene Bromocyclopentane Image: Chorobenzene	2-chlorobutane			
2-bromobutane				
Chlorobenzene Image: Chlorobenzene Benzyl chloride Image: Chlorobenzene 3-chloro-1-butene Image: Chlorobenzene Bromocyclohexane Image: Chlorobenzene Bromocyclopentane Image: Chlorobenzene	1-bromobutane			
Benzyl chloride	2-bromobutane			
3-chloro-1-butene Bromocyclohexane Bromocyclopentane	Chlorobenzene			
Bromocyclohexane Bromocyclopentane	Benzyl chloride			
Bromocyclopentane	3-chloro-1-butene			
	Bromocyclohexane			
β-bromostyrene	Bromocyclopentane			
	β-bromostyrene			

	Sodium Iodid	e/Acetone Test (S _N 2	2 Mechanism)
Test Substance	Observation	Inference	Equation
1-chlorobutane			
2-chlorobutane			
2-chloro-2- methylpropane			
1-bromobutane			
2-bromobutane			
Chlorobenzene			
Benzyl chloride			
3-chloro-1-butene			
Bromocyclohexane			
Bromocyclopentane			
β-bromostyrene			

Conclusion:

Exp.11

Experiment 11 Post Lab Questions:

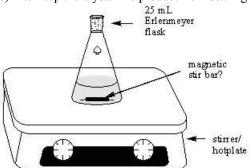
- 1. There are four isomeric alcohols having the formula $C_4H_{10}O$, and in this experiment you investigated the properties of three of them. How would you expect the fourth isomer to behave when treated with (i) acidic sodium dichromate, and (ii) Lucas reagent?
- 2. On the basis of your results, arrange the eleven halogen-containing compounds in order of *decreasing* reactivity in (i) S_N1 reactions and (ii) S_N2 reactions.
- 3. a. What results would you expect to observe when benzyl alcohol, C₆H₅CH₂OH, is treated with (i) acidic sodium dichromate, and (ii) Lucas reagent?
 - b. What results would you expect to obtain when 1-chloro-2,2-dimethylpropane is treated with (i) ethanolic silver nitrate, and (ii) sodium iodide in acetone?

Date:

CHEM360 Experiment 12 Report

Student Name: ID Number:

Experiment 12 Prelab Questions:


Lab Safety

2.

- 1. Sodium borohydride (NaBH₄) is much safer to use than lithium aluminium hydride (LiAlH₄)?
 - a) yes
 - b) no
 - c) This statement is false. They are both safe
 - d) This statement is false. They are both highly dangerous reagents!

Equipment Preparation

- Why must you place a magnetic stir bar into the reaction vessel and use a stir plate for this reaction?
 - a) for the reaction to occur to its fullest extent, the reagents need to be continuously mixed
 - b) the magnetic stir bar serves as a site for crystal nucleation
 - c) to keep the crystalline product from settling to the bottom of the flask

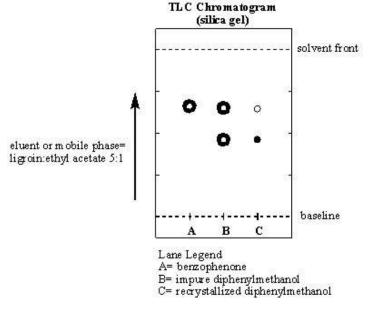
Reagent Preparation

- 3. Why must you prepare the two main reagents, sodium borohydride and benzophenone, separately and then mix them together?
 - a) as a safety precaution so as to avoid an uncontrolled premature reaction
 - b) the two reagents are not miscible
 - c) you can only do one thing at a time in a chemistry lab

Reaction

- 4. Why do you add the sodium borohydride slowly to the benzophenone?
 - a) to avoid spilling the reagent
 - b) sodium borohydride is very difficult to handle
 - c) as a safety precaution; to control the rate of the exothermic reaction

Reaction Workup


- 5. What is the purpose of adding the hydrochloric acid/ice in the procedure step 5?
 - a) To dilute and lower the pH of the mixture and thereby prevent product precipitation
 - b) To decompose the excess sodium borohydride, and protonate the alcohol moiety of the final product
 - c) To prevent the decomposition of the sodium borohydride

Exp.12

- 6. Should an EreInmeyer flask be used as the vessel to recrystallize the final product, or a beaker?
 - a) There is no advantage. Either one could be used
 - b) Erlenmeyer flask. The narrower neck of the Erlenmeyer flask acts like a condenser and prevents the solvent from evaporating too quickly. Also a flask can eventually be sealed with a stopper while crystal growth is occurring.
 - c) Beaker. A beaker is easier to add solvent to and the recrystallized product is easier to recover from a beaker.
- 7. Why is hexane used as the recrystallization solvent?
 - a) because diphenylmethanol is soluble in hot hexane and insoluble in cold hexane
 - b) because diphenylmethanol is insoluble in hot hexane and isoluble in cold hexane
 - c) because it is the only solvent available

Product Characterization

- 8. What is the purpose of performing TLC on the crude and recrystallized product, and benzophenone?
 - a) To compare and determine the purity of the final product
 - b) To measure the yield of the final product
 - c) To purify the final product
- 9. Does the TLC sketch shown here indicate the product diphenylmethanol to be pure or impure after recrystallization?
 - a) pure
 - b) impure

- 11. What major differences in absorption bands would you expect to see in the infrared spectra of benzophenone, and diphenylmethanol, the alcohol product?
 - a) sharp ~ 1710 cm⁻¹ C=O of carbonyl in the ketone, broad 3300 cm⁻¹ absorption for alcohol
 - b) broad \sim 1740 cm⁻¹ C=O of carbonyl in the ketone, sharp 3300 cm⁻¹ absorption for alcohol
 - c) Sharp ~1200 cm⁻¹ absorption for C-O for the ketone, not present for the alcohol

Exp.12

CHEM360 Experiment 12 Report

Date:_____

Student Name:_____

ID Number:_____

Title:

Objective(s):

Reaction Equation: (structures and names)

Introduction:

Procedure: (Reference format: author surname, initials, date. Title of text, publisher, pages) Any Changes/Modifications?

Part A: Reduction of Benzophenone

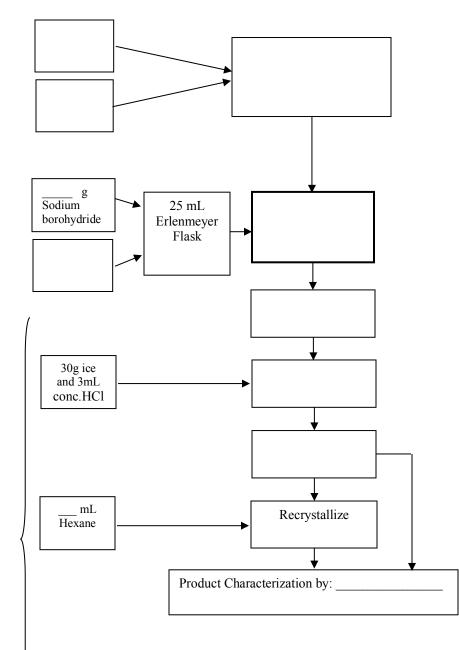
Procedural Step	Observations/Comments/Inferences
Preparation of organic reagent	
Preparation of reducing agent	

Part B: Thin Layer Chromatography of Reagent and Product.

Procedural Step	Observations/Comments/Inferences
1. Preparation of eluent	
2. Preparation of spotting solutions	
3. Number of spots per lane:	
4. Appearance of developed TLC	

 Table 12.1.
 Table of Reagents for Exp. 12

Reagent	Formula	Mwt.	Vol/Mass	d	moles	mp	bp	Haz. Properties
Benzophenone (or diphenylketone)	C ₆ H ₅ COC ₆ H ₅	182.22		NA			NA	
Sodium borohydride	NaBH ₄	37.83		NA		400	NA	
Methanol	CH ₃ OH	32.04		1.3288		-93.9	65	
Hydrochloric acid (conc. = 12M)	HC1	36.46		1.20		NA		
Hexane	$C_{6}H_{14}$	86.18		0.659		NA	69	
Ethyl acetate	C ₂ H ₅ CO ₂ C ₂ H ₅	88.11	2 mL	0.902		NA	77	
Ligroin	Mineral spiritis		10 mL	0.656		NA	60-80	
Chloroform	CHCl ₃	119.39	3 mL	1.500		NA	61.3	
Iodine	I ₂	253.81	trace	NA		133	NA	
Diphenylmethanol (or benzhydrol)			?				NA	


NA = not applicable

SAMPLE EXPERIMENT 12 FLOW CHART

REAGENT

PROCEDURE / STEP

OBSERVATION

29

Exp.12

Experiment 12 Results:

Table 12.2. Summary Table of Observations (this table is optional. Use only to tidy up your observations from the previous page if necessary.):

Procedural Step	Comment or Observation

 Table 12.3.
 Table of Product Data for Diphenylmethanol, the Carbonyl Reduction Product.

Table 12.3. presents the summary of the results of the experiment. The calculations for limiting reagent, theoretical yield and percent yield are shown below the table. Note: ______ was found to be the limiting reagent.

Product Name	Yield	Appearance	Observed	Lit. Melting	Theoretical	% Yield
	(Mass in g)	of Solid	Melting Pt.*	Pt.	Yield	
			(°C)	(°C)	(g)	

*uncalibrated thermometer used.

Limiting Reagent and Theoretical Yield Calculation:

Moles of benzophenone used in the reaction =

Moles of sodium borohydride used in the reaction =

Theoretical Yield of diphenylmethanol =

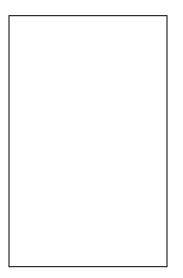
% Yield Calculation:

Exp.12

Table 12.4. Infrared Spectrum Data Analysis (see attached spectra)

Absorption Band#	Wavenumber (cm ⁻¹)	Peak Shape (sharp, broad)	Peak Intensity (strong, medium or weak)	Functional Group Indicated

Functional Group absent:


Absorption Band#	Wavenumber (cm ⁻¹)	Peak Shape (sharp, broad)	Peak Intensity (strong, medium or weak)	Functional Group Indicated

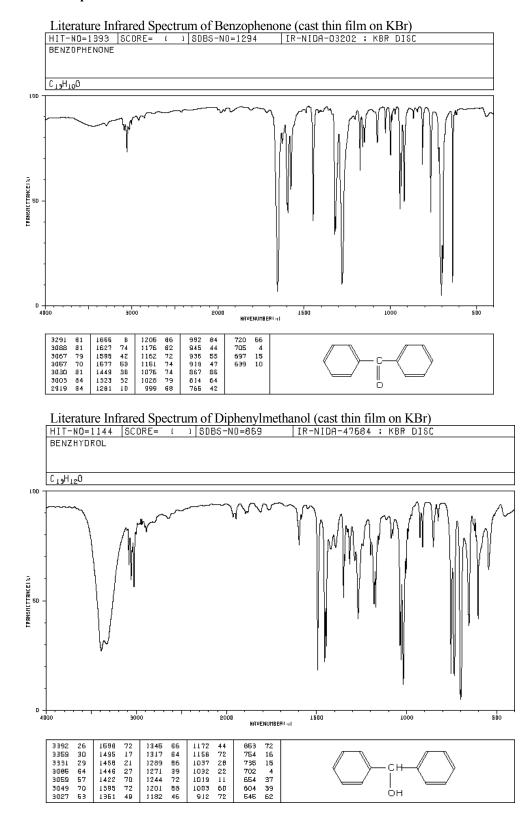
Functional Group absent:

Absorption Band#	Wavenumber (cm ⁻¹)	Peak Shape (sharp, broad)	Peak Intensity (strong, medium or weak)	Functional Group Indicated

Functional Group absent:

Fig 12.1. TLC Analysis of Benzophenone, Crude and Recrystallized Diphenylmethanol

Discussion: Comments on and reasons for yield (high/med/low), purity (high/med/low), sources of error (uncalibrated thermometer?, side reactions?):


Conclusion:

Structure of Product

Experiment 12 Post Lab Questions:

1. Aldehydes and ketones can be reduced to alcohols using hydrogen gas and a metal catalyst. Suggest two reasons why the use of sodium borohydride is preferred over the catalytic hydrogenation in order to prepare diphenylmethanol from benzophenone.

2. In this experiment, you destroyed the excess sodium borohydride by reacting it with hydrochloric acid (Part A, Step 5). What gas was evolved during the process? Write a balanced equation for the reaction that occurred. (**Hint:** one of the products was boric acid).

Exp.13

CHEM360 Experiment 13 Report

Date:_____

Student Name:

ID Number:_____

Experiment 13 Prelab Questions

Lab Safety

- 1. What is the major danger of using 95% ethanol?
 - a) It is corrosive
 - b) It is flammable
 - c) It is an oxidizer

Equipment Preparation

- 2. A stirrer/hot plate is used in this experiment in order to:
 - d) continuously mix the reagents and allow the reaction to occur to its fullest extent
 - e) the magnetic stir bar serves as a site for crystal nucleation
 - f) to keep the crystalline product from settling to the bottom of the flask

Reagent Preparation

- 3. How do you use the molar mass (MM, g/mol) and density (d, g/mL) of your starting aldehyde or ketone to determine the volume amount of reagent to add (mL) to the reaction, from knowing only the number of moles to use?
 - a) Moles reagent to use is divided by the MM = grams reagent, divided by the density = mL of reagent to use, i.e., (mol / MM)/d = mL
 - b) Moles reagent to use multiplied by the MM = grams reagent, divided by the density = mL of reagent to use, i.e., $(mol \times MM)/d = mL$
 - c) Moles reagent to use divided by the MM = grams of reagent, multiplied by the density = mL of reagent to use, i.e., $(mol / MM) \times d = mL$
- 4. What is the purpose of adding the reagent 95% ethanol (in water) to the reaction mixture of the ketone and aldehyde?
 - a) 95% ethanol is the solvent for the reaction
 - b) 95% ethanol prevents unwanted side reactions
 - c) 95% ethanol reacts with sodium hydroxide to form sodium ethoxide, which is the base catalyst for the reaction

Reaction

- 5. The aldol condensation is used by synthetic chemists:
 - a) because it is a reversible reaction
 - b) because it is non-reversible reaction
 - c) to form a new carbon-carbon bond

Reaction Workup

- 6. Will your product be essentially pure after cooling the flask in ice in Step 2 of the procedure?
 - a) yes
 - b) no

- 7. Will your product be essentially pure after washing your product with ice cold 95% ethanol, ice cold 95% ethanol + 4% acetic acid and again with ice cold 95% ethanol in Step 3 of the procedure?
 - a) yes
 - b) no
- 8. Why must the washing solutions be ice-cold in Step 3 of the procedure?
 - a) to prevent dissolving the product, which is more soluble in warm solvent than cold
 - b) to keep the reaction from warming up
 - c) to prevent unwanted side reactions
- 9. How will you know which solvent (95% ethanol or toluene) is more suitable for the recrystallization of your product?
 - a) the chosen solvent will dissolve less crystals when hot, and form more crystals when cold
 - b) the chosen solvent will dissolve more crystals when hot, and form more crystals when cold
 - c) the chosen solvent will dissolve less crystals when hot, and form less crystals when cold

Product Characterization

- 10. What reason(s) may help to explain a low percentage yield for your aldol condensation reaction
 - a) the reagents where incorrectly measured
 - b) all the washing steps resulted in the loss of some product, even when ice cold solvents were used
 - c) the chosen recrystallization solvent still kept some of the product dissolved
 - d) all of the above

Exp.13

CHEM360 Experiment 13 Report

Date:_____

Student Name:_____

ID Number:_____

Title:

Objective(s):

Reaction Equation: (structures and names)

Introduction:

Introduction: (cont.)

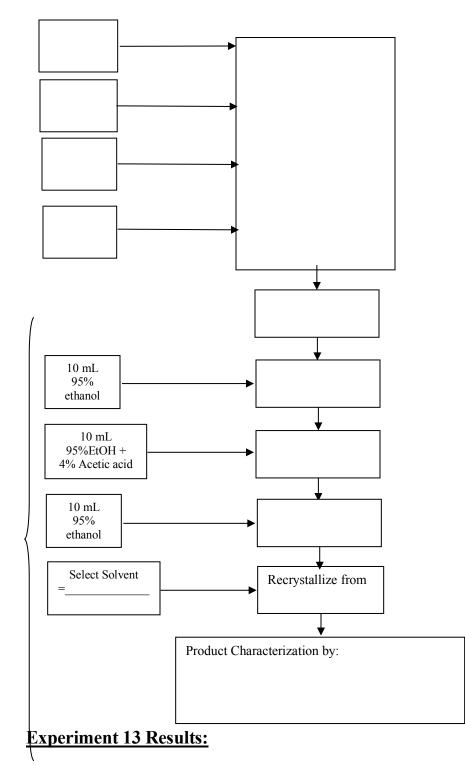
Exp.13

Procedure: (Reference: author surname, initials, date. Title of text, publisher, pages) Any Changes/Modifications?

Mixed Aldol Condensation Reaction Observations

Procedural Step	Observations/Comments/Inferences

Table 13.1. Table of Reagents for Exp. 13


Reagent	Formula	Mwt.	d	mp	bp	Haz. Properties
Benzaldehyde			1.044		179.5	
4-methylbenzaldehyde	CH ₃ C ₆ H ₄ CHO		1.019		204-205	
4-methoxybenzaldehyde	CH ₃ OC ₆ H ₄ CHO		1.119		248	
Cinnamaldehyde	C ₆ H ₅ CH=CHCHO		1.048		248	
Acetone	CH ₃ COCH ₃		0.818		56.5	
Cyclopentanone	C ₅ H ₈ O		0.951		130.6	
Cyclohexanone	C ₆ H ₁₀ O		0.947		155	
4-methylcyclohexanone	CH ₃ C ₆ H ₉ O		0.914		169-171	
Ethanol	CH ₃ CH ₂ OH		0.785		78.5	
Sodium hydroxide	NaOH (1M)		~1.00			
Acetic acid	CH ₃ COOH		1.049		118.1	
Toluene	C ₆ H ₅ CH ₃		0.865		110.6	
Benzalacetone	C ₆ H ₅ CHCHCOCH ₃					
Dibenzalacetone						
Dibenzalcyclohexanone						
Dibenzalcyclopentanone						
Chloroform	CHCl ₃					
Carbon tetrachloride	CCl ₄					

SAMPLE EXPERIMENT 13 FLOW CHART

REAGENT

PROCEDURE / STEP

OBSERVATION

Procedural Step	Comment/Observation/Inferences		

 Table 13.2.
 Summary Table of Observations (this table is optional. Use only to tidy up your observations from the previous page if necessary.):

 Table 13.3.
 Table of Data for Aldol Condensation Product.

Table 13.3 presents the summary of the results of the experiment. The calculations for limiting reagent, theoretical yield and percent yield are shown below the table. Note: Both reagents are added in equal stoichiometric amounts. The ______ was used as the limiting reagent as it is a 1:1 ratio with the product.

Product Name	Yield Mass (g)	Appearance of Solid	Melting Pt.* (°C)	Literature Melting Pt. (°C)	Theoretical Yield (g)	% Yield

*Uncorrected for temperature calibration

Limiting Reagent and Theoretical Yield Calculation:

Moles of ketone actually used in the reaction =

Moles of aldehyde actually used in the reaction =

Theoretical Yield of Aldol product =

% Yield Calculation:

Exp.13

Table 4. Infrared Spectrum Data Analysis (see attached spectra)

rubie in minureu speechum		1	· • • • • • • • • • • • • • • • • • • •		
Aldehyde =	Absorption Band#	Wavenumber (cm ⁻¹)	Peak Shape (sharp, broad)	Peak Intensity (strong, medium or weak)	Functional Group Indicated

Functional Group absent:

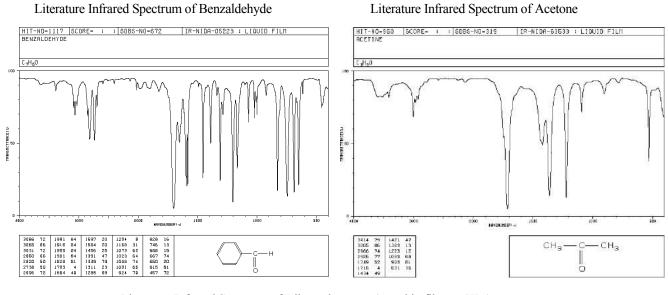
Ketone =	Absorption Band#	Wavenumber (cm ⁻¹)	Peak Shape (sharp, broad)	Peak Intensity (strong, medium or weak)	Functional Group Indicated

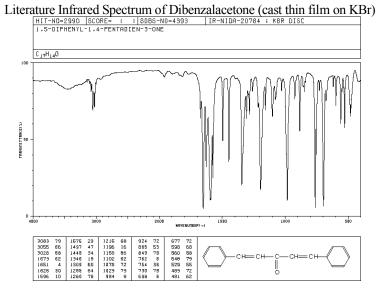
Functional Group absent:

Aldol Product =	Absorption Band#	Wavenumber (cm ⁻¹)	Peak Shape (sharp, broad)	Peak Intensity (strong, medium or weak)	Functional Group Indicated

Functional Group absent:

Discussion: Comments on and give reasons for high or low yield and purity, and sources of error (practical and theoretical), etc.:


Conclusion:


Structure of Product

Experiment 13 Post Lab Questions:

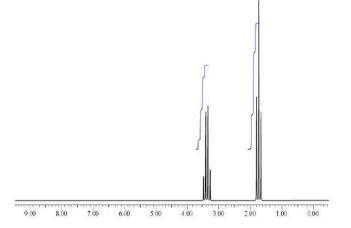
1. The product obtained in this experiment results from a crossed condensation between an aldehyde and a ketone. Identify two other base-initiated reactions that could conceivably occur involving either or both of these reactants. Suggest reasons why these reactions do not result in the formation of large quantities of by-products.

2. What is the purpose of adding sodium hydroxide to the reaction mixture? (use equations if necessary to explain your answer).

CHEM360 Experiment 14 Report

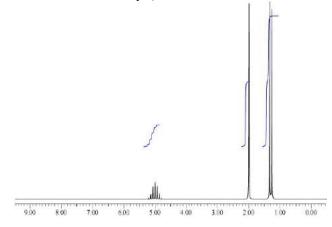
Date:					

Student Name:

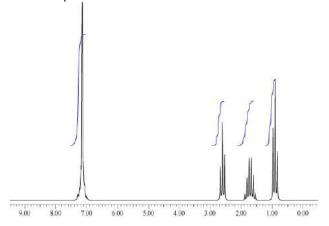

ID #:

Experiment 14 Prelab Questions:

- 1. ¹H-NMR is an abbreviation meaning:
 - a) nuclear magnetic resonance spectroscopy
 - b) proton nuclear magnetic resonance spectroscopy
 - c) carbon 13 nuclear magnetic resonance spectroscopy
- 2. What types of information are to be found in a ¹H-NMR spectrum?
 - a) chemical shift and multiplicity (splitting patterns)
 - b) chemical shift, number of equivalent hydrogens, and the multiplicity
 - c) chemical shift, number of equivalent hydrogens, multiplicity, and the number of neighbouring hydrogens
 - d) chemical shift, number of equivalent hydrogens, multiplicity, the number of neighbouring hydrogens, and the potential signal assignment (after consulting the Shifts for Various Functional Groups table.
- 3. If you know the chemical formula of your unknown, the 'degrees of unsaturation' calculation (deg Unsaturation . = nC + 1 + 1/2n 1/2nH 1/2nX) helps you to:
 - a) determine the number of 'equivalent double bonds' present in your unknown (e.g., alkene = 1, alkyne = 2, cylcoalkane = 1, benzene ring = 4)
 - b) determine the functional groups present in the unknown
 - c) determine the structure of your unknown
- 4. Chemical shifts are the result of 'shielding' and 'deshielding' in the environment the proton finds around it.
 - a) true
 - b) false
- 5. The N=n+1 rule is used to determine the number of neighbouring H
 - a) true
 - b) false
- 6. What is the purpose of adding tetramethylsilane (TMS) to a ¹H-NMR sample prior to determining its spectrum?
 - a) to give an example of a highly shielded hydrogen environment
 - b) to serve as a reference standard
 - c) to serve as a blank


- 7. A very common splitting pattern seen in a ¹H-NMR spectrum (see Unknown X spectrum below) is the '2H quartet coupled to a 3H triplet'. Which of the following molecular fragments does this represent?
 - a. a methyl group
 - b. an ethyl group
 - c. an isopropyl group
 - d. a *tert*-butyl group

¹H-NMR spectrum for Unknown X showing a '2H quartet coupled to a 3H triplet'


- 8. Another very common splitting pattern seen in a ¹H-NMR spectrum (see Unknown Y spectrum below) is a '1H septet coupled to a 6H doublet'. Which of the following molecular fragments does this usually represent?
 - a) a methyl group
 - b) an ethyl group
 - c) an isopropyl group
 - d) a *tert*-butyl group

¹H-NMR spectrum for Unknown Y showing a '1H septet coupled to a 6H doublet' (ignore the singlet also shown in this example)

- 9. The following ¹H-NMR spectrum for Unknown Z shows Unknown Z to have an aromatic ring.
 - a) true
 - b) false

¹H-NMR spectrum for Unknown Z

- 10. The hardest part in determining the structure of an unknown from your NMR data, is usually the final assembly of all the fragments.
 - a) true

b) false

Exp.14

CHEM360 Experiment 14 Report

Date:_____

Student Name:_____

ID Number:_____

Title:

Objective(s):

Procedure:

(Ref:) Changes/Modification:

> ATTACH YOUR 4 UNKNOWN IR/NMR SPECTRA PROBLEMS TO THIS TITLE PAGE. The unknown spectra can be found either at the end of this Report Book or online at: <u>http://science.athabascau.ca/Labs/resources/360Unkns/index.php</u> username = auchem360 password = synthesis

Date:_____

CHEM360 Experiment 15 Report

Student Name:_____ ID Number

Experiment 15 Prelab Questions

Lab Safety

- 1. What danger exists with the Tollen's reagent?
 - a) The silver mirror that forms is high reflective to light
 - b) ammonia used is very corrosive
 - c) Tollen's reagent decomposes on standing to an explosive substance

Equipment Preparation

- 2. Test tube size is very important in performing functional group tests?
 - a) true. The test tube must not become so filled with reagent and test substance, that it becomes difficult to mix
 - b) true. The test tube must be completely filled with the reagent and test substance, so that it can only be mixed by stoppering and inverting the test tube
 - c) false

Reagent Preparation

- 3. What should the Tollen's reagent appear like after the addition of the 1.0 M ammonium hydroxide?
 - a) a brownish colored precipitate in solution
 - b) a silver colored solution
 - c) a clear and colorless solution

Reaction(s)

- 4. What does the Brady's Test detect?
 - a) methyl ketone groups in aldehydes and ketones
 - b) carbonyl groups of aldehydes and ketones
 - c) aldehydes only
 - d) ketones only
- 5. What does the Tollens' Test detect?
 - a) methyl ketone groups of aldehydes and ketones
 - b) carbonyl groups of aldehydes and ketones
 - c) aldehydes only
 - d) ketones only
- 6. What does the Schiff's Test detect?
 - a) methyl ketone groups of aldehydes and ketones
 - b) carbonyl groups of aldehydes and ketones
 - c) aldehydes and aldehyde impurities mostly
 - d) ketones only

ID Number:

Exp.15

- 7. What does the Iodoform Test Detect?
 - a) methyl ketone groups of aldehydes and ketones
 - b) carbonyl groups of aldehydes and ketones
 - c) aldehydes only
 - d) ketones only
- 8. Which of the following compounds gives a positive reaction to Brady's, Tollens', and Schiff's Tests above?
 - a) benzaldehyde
 - b) cylcopentanone
 - c) acetone
- 9. Of the following compounds, which does not react in any of the four above tests (Brady's, Tollens', Schiff's, and Iodoform Tests):
 - a) an ethyl ketone
 - b) cinnamaldehyde
 - c) ethyl benzoate
 - d) cyclohexanone
- 10. What must be done to the unused Tollens' reagent and any unreacted Tollens' test samples:
 - a) rinse the reagent into the General Organic waste container
 - b) dilute with water
 - c) add concentrated nitric acid to decompose the Tollens' reagent
 - d) leave reagent in the hood for someone else to find

Exp.15

CHEM360 Experiment 15 Report

Date:_____

Student Name:_____

ID Number:_____

Title:

Objective(s):

Reaction Equations:

Introduction:

Exp.15

Procedure: (Ref:) Changes/Modification:

Table 15.1. Table of Reagents for Experiment 15.

Reagent	Formula	Mwt.	d	mp	bp	Haz. Properties
Benzaldehyde	C ₆ H ₅ CHO	106.12	1.044	-26	179.5	
4-methylbenzaldehyde	CH ₃ C ₆ H ₄ CHO	120.15	1.019		204-205	
4-methoxybenzaldehyde	CH ₃ OC ₆ H ₄ CHO	136.15	1.119	-1	248	
trans-cinnamaldehyde	C ₆ H ₅ CHCHCHO	132.16	1.048		248	
Acetone	CH ₃ COCH ₃	58.08	0.791	-94	56	
Cyclopentanone	C ₅ H ₈ (=O)	84.12	0.951	-51	130-131	
Cyclohexanone	C ₆ H ₁₀ (=O)	98.15	0.947	-47	155	
4-methylcyclohexanone	CH ₃ C ₆ H ₉ (=O)	112.17	0.914		169-171	
Formaldehyde	НСНО	30.03	1.083			
Acetophenone	C ₆ H ₅ COCH ₃	120.15	1.030	19-20	202	
1-butanol	CH ₃ (CH ₂) ₃ OH	74.12	0.810	-90	117.7	
2-butanol	C ₂ H ₅ CH(OH)CH ₃	74.12	0.807		99-100	
Methanol	СН ₃ ОН	32.04	0.791	-98	64.7	
Brady's Reagent	Solution			See hydrazi	ine, 2,4-dinitropl	nenyl
2,4-dinitrophenyl hydrazine	(O2N)2C6H3NHNH2	198.14				
Sulfuric acid, conc. (18 M)	H ₂ SO ₄	98.08	1.840			
Ethanol, 95%	CH ₃ CH ₂ OH	46.07	0.785		78.5	
Tollen's Reagent	Solution		See ar	nmonia + silv	ver nitrate	
Schiff's Reagent	Solution		mixture o	of roseaniline l	hydrochloride an	d sulfur dioxide, Toxic
Ammonium hydroxide	NH4OH	35.05	0.90			
Silver nitrate	AgNO ₃ , 0.3 M	169.87	4.352	212		
Nitric acid	HNO ₃	63.01				
Sodium hydroxide	NaOH, 3 M	40.00	~1.00			
Iodine in potassium iodide	I ₂ in KI					

Experiment 15 Part A Results:

	Brady's Test 2,4-dinitrophenylhydrazine						
Test Substance	Observation	Inference	Equation				
Aldehyde =							
Ketone =							
Positive control							
Negative control							

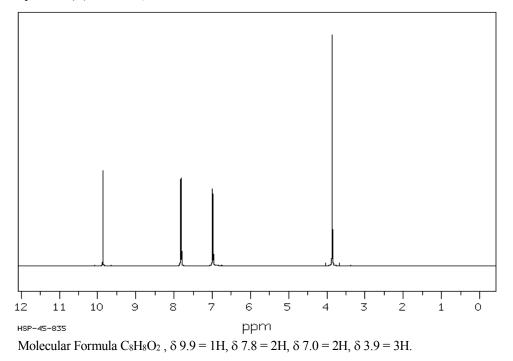
Part B Results:

	Tollen's Test - Silver Mirror						
Test Substance	Observation	Inference	Equation				
Aldehyde =							
Ketone =							
Positive control							
Negative control							

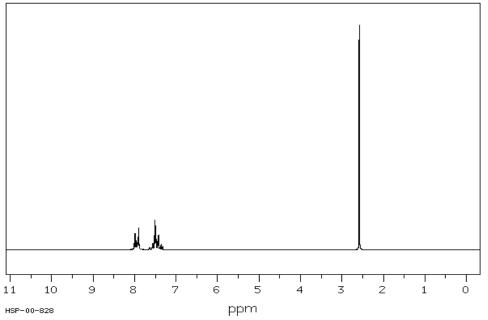
Part C Results:

Schiff's Test						
Test Substance	Observation	Inference	Equation			
Formaldehyde						
Aldehyde =						
Ketone =						

Iodoform Test					
Test Substance	Observation	Inference	Equation		
Acetone					
Cyclohexanone					
Acetophenone					
1 butanol					
2-butanol					


Conclusion: Comments on tests, sources of error, and false positives/negatives:

Experiment 15 Post Lab Questions:


- 1. Write a balanced equation for the reaction of acetaldehyde (i.e. ethanal) with ammoniacal silver nitrate. Remember that this is a redox reaction.
- 2. Outline a systematic functional group test procedure that would enable you to distinguish among hexanal, 2-hexanone, 3-hexanone, 2-hexanol, and cyclohexanol.
- 3. Aldehydes and ketones can also be easily distinguished by their infrared spectra and their identity deduced from their ¹H-NMR spectra. Explain why this is.

- 4. From the following results, identify the unknown compounds.
 - a) Compound A: 2,4-DNPH positive, Tollens Test positive, Schiff's test positive, Iodoform negative (see Spectrum (A) next page).
 - b) Compound B: 2,4-DNPH positive, Tollens Test negative, Schiff's test negative, Iodoform positive (see Spectrum (B) next page).

Spectrum (A): ¹H-NMR, 400 MHz in CDCl₃

Spectrum (B): ¹H-NMR, 90 MHz in CDCl₃

Molecular Formula C₈H₈O , δ 7.9 = 2H, δ 7.3-7.7 = 3H, δ 2.6 = 3H.

CHEM360 Experiment 16 Report

Date:_____

Student Name:_____

ID Number:_____

Experiment 16 Prelab Questions

Lab Safety

- 1. A procedureal flowchart is **highly recommended** for performing this experiment.
 - a) true
 - b) false
- 2. No source of flame is allowed in this experiment because of the use of diethyl ether.
 - a) true
 - b) false

Equipment Preparation

3. Dry glassware is essential for the Grignard reaction to work because:

- a) the Grignard reaction is easily contaminated with water
 - b) the Grignard reagent is very moisture sensitive
 - c) the Grignard reagent is very stable

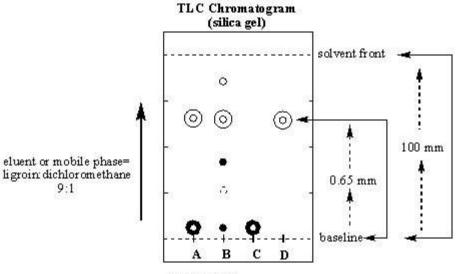
Reagent Preparation

4. What is the purpose of the magnesium and diethyl ether used in the Grignard Reaction?

- a) magnesium reacts with bromobenzene to form the alcohol product, triphenylmethanol, and diethyl ether is the solvent which keeps the product in solution
- b) magnesium reacts with ethyl benzoate to form the Grignard reagent, and diethyl ether is the solvent for the reaction, which also helps to stabilize the Grignard reagent
- c) magnesium reacts with bromobenzene to form the Grignard reagent, and diethyl ether is the solvent for the reaction, which also helps to stabilize the Grignard reagent

Reaction

- 5. Which of the following are the limitations of the Grignard Reaction?
 - a) the Grignard reagent is only useful in preparing tertiary alcohols, and it is moisture sensitive
 - b) the Grignard reagent can only be formed from certain organohalides, and it is moisture, and oxygen sensitive
 - c) the Grignard reagent can only be formed from certain organohalides, and it is oxygen sensitive


Reaction Workup

- 6. What is the purpose of using 50mL 2M H₂SO₄ in Part C Step 1?
 - a) To dilute and lower the pH of the mixture and thereby prevent product precipitation
 - b) To protonate the alcohol moiety of the final product
 - c) To prevent the decomposition of the Grignard reagent
- 7. What layer will your product be in after addition of the diethyl ether in Part C Step 3?
 - a) the aqueous layer
 - b) the ether layer

- 8. What is the purpose of washing the organic layer with water in Part C Step 6?
 - a) to remove water soluble impurities
 - b) to remove organic impurities
 - c) to extract the product into the aqueous layer
 - d) to 'pre-dry' the organic layer, thereby removing the bulk of the water from the ether
- 9. What is the purpose of washing the organic layer with brine in the same Part C Step 6?
 - a) To remove water soluble impurities
 - b) To remove organic impurities
 - c) To 'pre-dry' the organic layer, thereby removing the bulk of the water from the ether
 - d) To remove all water from the organic layer

Product Characterization

- 10. What is the Retention Factor or R_f of pure biphenyl in Lane D in the TLC sketch shown below:
 - a) 1.54
 - b) 0.65
 - c) 0.154
 - d) 0.065

Lane Legend

A= crude triphenylm ethanol

B= mother liquor

C= recrystallized triphenylmethanol

D= pure biphenyl

CHEM360 Experiment 16 Report

Date:_____

ID Number:_____

Student Name:_____

Title:

Objective(s):

Reaction Equation(s):

Exp.16

Introduction:

Exp.16

Procedure:

(Ref:) Changes/Modification:

A. Procedure for formation of Grignard Reagent.

Procedural Step	Observations/Comments/Inferences			

B. Procedure for the reaction of the Grignard Reagent with ethyl benzoate to form Tiphenylmethanol.

Observations/Comments/Inferences			

C. Procedure for isolation of Triphenylmethanol.

Procedural Step	Observations/Comments/Inferences			

D. Procedure for the observation of the carbocation.

Exp.16

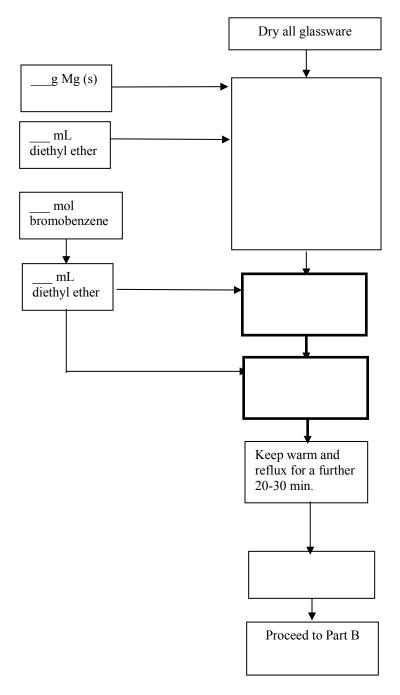
Procedural Step	Observations/Comments/Inferences		

E. Procedure for assessment of product purity by Thin Layer Chromatography.

Procedural Step	Observations/Comments/Inferences			

Procedure: (cont.)

Table 16.1. Table of Reagents for Experiment 16.


Reagent	Formula	Mwt.	d	mp	bp	Haz. Properties
Bromobenzene	C ₆ H ₅ Br					
Magnesium		24.31	1.75	649	1090	
Ethyl benzoate	$C_6H_5CO_2C_2H_5$					
Diethyl ether	C ₂ H ₅ OC ₂ H ₅	74.12	0.7138	-116	34.5	
Sulfuric acid, 2M		98.07				
Sodium H carbonate		84.01	2.159	270		
Sodium sulfate, anhyd		142.04	2.68			
Dichloromethane		84.93	1.325	-95.1	40.1	
Biphenyl	(C ₆ H ₅) ₂	154.21	0.992	71	255.9	
Ligroin	(high bp pet. ether) alkane mixt.		0.656		60-80	
Iodine		253.8	4.930	133		
Methanol	CH ₃ OH	32.04	0.7914	-94	65	
Ethanol	C ₂ H ₅ OH	46.07	0.7893	-117	78.5	
Triphenylmethanol	(C ₆ H ₅) ₃ COH					

SAMPLE EXPERIMENT 16 FLOW CHART Part A

REAGENT

PROCEDURE / STEP

OBSERVATION

Exp.16

SAMPLE EXPERIMENT 16 FLOW CHART Part B and C

REAGENT

PROCEDURE / STEP

OBSERVATION

Experiment 16 Results:

Table 16.2. Summary Table of Observations (this table is optional. Use only to tidy up your observations from the previous page if necessary.):

Procedural Step	Comment or Observation

 Table 16.3.
 Table of Product Data for Triphenylmethanol, the Grignard Reaction Product.

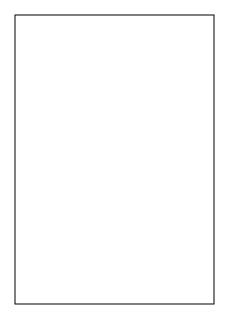
Table 16.3. presents the summary of the results of the experiment. The calculations for limiting reagent, theoretical yield and percent yield are shown below the table. Note: ______ was found to be the limiting reagent.

Product Name	Yield	Appearance	Observed	Lit. Melting	Theoretical	% Yield
	(Mass in g)	of Solid	Melting Pt.*	Pt.	Yield	
			(°C)	(°C)	(g)	

*uncalibrated thermometer used.

Limiting Reagent and Theoretical Yield Calculation:

Moles of magnesium used in the reaction =


Moles of bromobenzene used in the reaction =

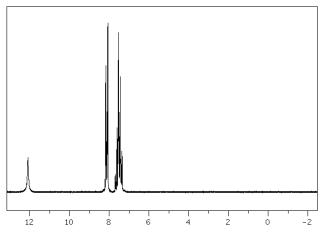
Moles of ethyl benzoate used in the reaction =

Theoretical Yield of triphenylmethanol =

% Yield Calculation:

Fig 16.1. TLC Analysis of Biphenyl, Mother Liquor, Crude and Recrystallized Triphenylmethanol

Lane#	Dist to Center Spot ()	Dist to Solvent Front ()	Rf


Discussion: Comments on and reasons for yield (high/med/low), purity (high/med/low), sources of error, etc.:

Conclusion:

Structure of Product

Experiment 16 Post Lab Questions:

- 1. How do you account for the fact that biphenyl is formed as a by-product in this reaction?
- 2. Why do you think that reactions involving Grignard reagents are sometimes carried out in an atmosphere of nitrogen or argon?
- 3. A Grignard reaction was performed and the following ¹H-NMR (90 MHz in CDCl₃) was obtained of the purified product. Deduce the product's structure (Molecular Formula = $C_7H_6O_2$). Also write the overall reaction for its formation from any organohalide and carbonyl compound.

¹ H-NMR	Spectral	Data:
--------------------	----------	-------

<u>Signal #</u>	<u>Shift</u>	Integrat'n	Splitting	Comment	<u>#Neighbour H</u>	Signal Assignment
1	δ 7.5	3Н				
2	δ 8.1	2H				
3	δ 12.1	1H		Xchngs with D2O		

Date:_____

Exp.17

CHEM360 Experiment 17 Report

Student Name: ID N

Experiment 17 Prelab Questions

Lab Safety

- 1. In Part A, the reduction of 4-nitrotoluene, a dangerous gas, HCl, must be trapped using a:
 - a) vacuum take off adaptor
 - b) sodium hydroxide acid-vapour gas trap
 - c) calcium chloride

Equipment Preparation

- 2. In Part C, Step 8, the reaction mixture must be cooled in an ice bath prior to suction filtration because:
 - a) the product is least soluble in ice cold water
 - b) it will prevent dangerous side reactions from occuring
 - c) it will stop the reaction between sodium hydrogen sulfite and manganese dioxide

Reagent Preparation

In Part C, Step 3, the reason for splitting the potassium permanganate into 10 equal portions is:

- a) the potassium permanganate is not very soluble in hot water and therefore cannot be all added at once
- b) the potassium permanganate is to be carefully added in portions so as to control the rate of the oxidation reaction
- c) to test the student's ability to follow procedures

Reaction

3.

- 4. In Part C, the oxidation of 4'-methylacetanilide, the oxidizing agent is:
 - a) magnesium sulphate heptahydrate
 - b) 4'methylacetanilide
 - c) potassium permanganate
 - d) 4-acetamidobenzoic acid
- 5. In Part E, what is the purpose of the 100% ethanol used in Step 2.
 - a) it is the solvent for the Fisher esterification reaction
 - b) it is both the solvent and co-substrate for the Fisher esterification reaction
 - c) since benzocaine is highly soluble in ethanol, it is used so that the final product will not precipitate from the reaction mixture

Reaction Workup

- 6. In Part D, the 4-acetamidobenzoic acid is hydrolyzed by the addition of _____?
 - a) dilute hydrochloric acid
 - b) water
 - c) water and 6.0 M hydrochloric acid
- 7. In Part D, what is hydrolyzed, i.e., what is removed from the starting reagent to form the 4-aminobenzoic acid product?
 - a) acetic acid
 - b) ethanol
 - c) water

ID Number:

- 8. During a reflux, what constant states are maintained while the reaction proceeds? (there are 3)
 - a) homogeneity, temperature, and volume of the solvent
 - b) homogeneity, temperature, and volume of the starting reagent
 - c) moles of reagent, moles of product, and temperature of the reaction

Product Characterization

- 9. Why should you not bother to perform a melting point on 4-acetamidobenzoic acid?
 - a) the melting point of this compound will be to low to record accurately
 - b) the compound is very unstable and cannot be heated
 - c) the melting point of this compound will be to high to read for the thermometers provided in this course to read
 - d) the melting point of this compound is unknown
- 10. If you obtained % yields of 85%, 65% and 90% in a three-step synthesis, what is the overall % yield?
 - a) 240%
 - b) 50%
 - c) 145%
 - d) 18%

Exp.17

CHEM360 Experiment 17 Report

Date:			

Student Name:_____

ID Number:_____

Title:

Objective(s):

Reaction equation(s):_____

Introduction:

Introduction (cont.):

Exp.17

Procedure:

(Ref:) Changes/Modification:

Part C. Procedure for the synthesis of 4-acetamidobenzoic acid.

Procedural Step	Observations/Comments/Inferences
Record amount/appearance of pure 4-methylacetanilide used	
Reaction/Equipment Setup	
Reaction	
Reaction	
Reaction Work-up	
Reaction work-up	

Part D. Procedure for the synthesis of 4-aminobenzoic acid.

Procedural Step	Observations/Comments/Inferences
Record amount of pure 4-acetamidobenzoic acid used	
Reaction/Equipment Setup	
Reaction	
Reaction Work-up	
Reaction work up	

Part E. Procedure for the synthesis of benzocaine.

Procedural Step	Observations/Comments/Inferences
Record amount/appearance of pure <i>p</i> -aminobenzoic acid used	
Reaction/Equipment Setup	
Reaction	
Reaction Work-up	
*	

Exp.17

Table 17.1. Table of Reagents for Experiment 17

Reagent	Formula	Mwt.	d	mp	bp	Haz. Properties
4-methylacetanilide						
magnesium sulfate -7H ₂ O	MgSO ₄ -7H ₂ O					
potassium permanganate	KMnO ₄					
sodium hydrogen sulfite	NaHSO ₃					
4-acetamidobenzoic acid						
hydrochloric acid	HCl					
Ammonia (conc.)	NH ₃					
acetic acid, glacial						
4-aminobenzoic acid						
Ethanol						
sulfuric acid	H ₂ SO ₄					
sodium carbonate	Na ₂ CO ₃					
ethyl-4-aminobenzoate						

Exp.17

SAMPLE EXPERIMENT 17 FLOW CHART Part C

REAGENT

PROCEDURE / STEP

OBSERVATION

Exp.17

SAMPLE EXPERIMENT 17 FLOW CHART Part D

REAGENT

PROCEDURE / STEP

OBSERVATION

Exp.17

SAMPLE EXPERIMENT 17 FLOW CHART Part E

REAGENT

PROCEDURE / STEP

OBSERVATION

Experiment 17 Results:

 Table 17.2. Table Summarizing Observations (This table is optional. Use only to tidy up your observations from the previous page if necessary.:

Procedural Step	Observations/Comments/Inferences

Table 17.3.1 Properties of the 4-methylacetanilide Oxidation Product, <u>4-acetamidobenzoic acid</u>

Table 17.3.1 shows a summary of the results of the 4-acetamidobenzoic acid synthesis. The calculations for theoretical yield and percent yield are shown below the table. Note: ______ was the limiting reagent, since the only other reagent involved in the reaction, potassium permanganate was added in excess.

Name of Product	Mass (g)	Appearance of Solid	Melting Pt. (°C)	Theoretical Yield (g)	% Yield

Theoretical Yield Calculation:

% Yield Calculation:

Table 17.3.2 Properties of the 4-methylacetanilide Oxidation Product, 4-aminobenzoic acid

Table 17.3.2 shows a summary of the results of the 4-aminobenzoic acid synthesis. The calculations for theoretical yield and percent yield are shown below the table. Note: ______ was the limiting reagent, since the only other reagent involved in the reaction, phosphoric acid, served as a catalyst.

Name of Product	Mass (g)	Appearance of Solid	Melting Pt. (°C)	Theoretical Yield (g)	% Yield

Theoretical Yield Calculation:

% Yield Calculation:

Table 17.3.3 Properties of Fisher Esterification Product, benzocaine

Table 17.3.3 shows a summary of the results of the benzocaine synthesis. The calculations for theoretical yield and percent yield are shown below the table. Note: ______ was the limiting reagent, since the only other reagent involved in the reaction, phosphoric acid, served as a catalyst.

Mass (g)	Appearance of Solid	Melting Pt. (°C)	Theoretical Yield (g)	% Yield

Theoretical Yield Calculation:

% Yield Calculation:

(Theoretical) Overall % Yield Calculation

Table 4.1 Tabulation of Characteristic Infrared and ¹H-NMR Absorptions for 4-acetamidobenzoic acid.

Infrared Data:

	Absorption Band#	Wavenumber (cm ⁻¹)	Peak Shape (sharp, broad)	Peak Intensity (strong, med. or weak)	Functional Group Indicated
$> 3000 \text{ cm}^{-1}$					
Between 3000 and 2000 cm ⁻¹					
Between 2000 and 1400 cm ⁻¹					
< 1400 cm ⁻¹					

Functional Group(s) absent:

¹H-NMR Data:

Signal #	<u>Shift</u>	Integrat'n	Splitting	<u>Comment</u>	#Neighbour H	Signal Assignment

Table 4.2 Tabulation of Characteristic Infrared and ¹H -NMR Absorptions for 4-aminobenzoic acid.

Infrared Data:

	Absorption Band#	Wavenumber (cm ⁻¹)	Peak Shape (sharp, broad)	Peak Intensity (strong, med. or weak)	Functional Group Indicated
$> 3000 \text{ cm}^{-1}$					
Between 3000 and 2000 cm ⁻¹					
Between 2000 and 1400 cm ⁻¹					
< 1400 cm ⁻¹					

Functional Group(s) absent:

¹H-NMR Data:

Signal #	<u>Shift</u>	Integrat'n	Splitting	Comment	<u>#Neighbour H</u>	Signal Assignment

Exp.17

Table 4.3 Tabulation of Characteristic Infrared and ¹H -NMR Absorptions for benzocaine.

Infrared Data:

	Absorption Band#	Wavenumber (cm ⁻¹)	Peak Shape (sharp, broad)	Peak Intensity (strong, med. or weak)	Functional Group Indicated
$> 3000 \text{ cm}^{-1}$					
Between 3000 and 2000 cm ⁻¹					
Between 2000 and 1400 cm ⁻¹					
< 1400 cm ⁻¹					

Functional Group(s) absent:

¹H-NMR Data:

Signal #	<u>Shift</u>	Integrat'n	Splitting	<u>Comment</u>	<u>#Neighbour H</u>	<u>Signal Assignment</u>

Discussion:

Comments on and reasons for yield (high or low), purity (high/med/low), sources of error, overall synthesis effectiveness, etc.

Conclusion:

Structure of Product

- 1. In Part C, what is the purpose of adding magnesium sulfate to the reaction mixture?
- 2. In the discussion pertaining to the hydrolysis of 4-acetamidobenzoic acid, it was argued that the presence of the electron-withdrawing carboxyl group in the para position could result in the occurrence of some nucleophilic displacement if the hydrolysis was carried out under acidic conditions and an elevated temperature. What would the product of such a nucleophilic displacement reaction?
- 3. Write the balanced equation for the oxidation of 4'-methylacetanilide to 4acetamidobenzoic acid as carried out in Part C of the synthesis.
- 4. In Part E, what is the purpose of adding 100% ethanol to the reaction mixture? (use equations if necessary to answer this question)

Table of Reagents

Compound Name	Chemical Formula	Solid (S) or Liquid (L)	Formula Weight	MP or BP (°C)	Density (g/mL)	Refract. Index	Hazardous Properties*
acetanilide	CH3CONHC6H5	S	135.17	113-115			Toxic, irritant
acetanilide,4-methyl	CH ₃ CONHC ₆ H ₄ CH ₃	S	149.19	149-151			Irritant
acetanilide, p-nitro	CH ₃ CONHC ₆ H ₄ NO ₂	S	180.16	216			Irritant
acetanilide, o-nitro	CH ₃ CONHC ₆ H ₄ NO ₂	S	180.16	94	1.419		Irritant
acetanilide, <i>m</i> -nitro	CH ₃ CONHC ₆ H ₄ NO ₂	S	180.16	154-156			Irritant
acetic acid, glacial (17.4 M)	CH ₃ CO ₂ H	L	60.05	118.1	1.049		Corrosive, hygroscopic
acetic acid, <i>p</i> -ethoxyphenyl	C2H5OC6H4CH2CO2H	S	180.2	87-90			Irritant
acetic anhydride	(CH ₃ CO) ₂ O	L	102.09	140	1.082	1.3900	Corrosive, lachrymator
acetone	CH ₃ COCH ₃	L	58.08	56.5	0.7899	1.3590	Flammable, irritant
acetone, diethylamino	(C2H5)2NCH2COCH3	L	129.2	64/16mm	0.832	1.4250	Irritant
acetophenone	C ₆ H ₅ COCH ₃	L	120.15	202	1.030	1.5325	Irritant
activated carbon		S					(see charcoal)
allyl alcohol (2-propen-1-ol)	CH2=CHCH2OH	Ľ	58.08	96-98	0.854	1.4120	Highly Toxic, flammable
ammonia (14.8 M)	NH3	L	17.03	7070	0.90	1.1120	Corrosive, lachrymator
ammonium hydroxide (14.8 M)	NH4OH	L	35.05		0.90		Corrosive, lachrymator
aniline	C ₆ H ₅ NH ₂	L	93.13	184	1.022	1.5860	Highly toxic, irritant
aniline, 4-bromo	BrC ₆ H ₄ NH ₂	S	172.03	62-64	1.022	1.5000	Toxic, irritant
aniline, 4-chloro	ClC ₆ H ₄ NH ₂	S	172.03	72.5			Highly toxic, irritant
aniline, <i>a</i> -ethyl	CH ₃ CH ₂ C ₆ H ₄ NH ₂	L	127.37	210		1.5590	Toxic, irritant
aniline, 2-ethoxy	CH ₃ CH ₂ OC ₆ H ₄ NH ₂ CH ₃ CH ₂ OC ₆ H ₄ NH ₂	L	121.18	231-233	1.051	1.5550	Irritant, light sens.
aniline, 4-methyl	CH ₃ C ₆ H ₄ NH ₂ CH ₃ C ₆ H ₄ NH ₂	L	107.16	196	0.989	1.5700	Toxic, irritant
aniline, 3-nitro	NO ₂ C ₆ H ₄ NH ₂	S L	138.13	198	0.989	1.3700	Highly toxic, irritant
,							
aspirin (see salicylic acid, acetate)	CH ₃ CO ₂ C ₆ H ₄ CO ₂ H	S	180.16	138-140	1.0.1.1		Irritant, toxic
benzaldehyde	C ₆ H ₅ CHO	L	106.12	179.5	1.044	1.5450	Hi.toxic, cancer susp.agent
benzaldehyde, 4-methyl	CH ₃ C ₆ H ₄ CHO	L	120.15	204-205	1.019	1.5454	Irritant (p-tolualdehyde)
benzaldehyde,4-methoxy	CH ₃ OC ₆ H ₄ CHO	L	136.15	248	1.119	1.5730	Irritant, (anisaldehyde)
benzaldehyde, 4-nitro	NO ₂ C ₆ H ₄ CHO	S	151.12	106			Irritant
benzene	C ₆ H ₆	L	81.14	80.1	0.908	1.4990	Flamm., cancer susp.agent
benzene, bromo	C ₆ H ₅ Br	L	157.02	155-156	1.491	1.5590	Irritant
benzene, chloro	C ₆ H ₅ Cl	L	112.56	132	1.107	1.5240	Flammable, irritant
benzoate, ethyl	C6H5CO2C2H5	L	150.18	212.6	1.051	1.5050	Irritant
benzoate, methyl	C ₆ H ₅ CO ₂ CH ₃	L	136.15	198-199	1.094	1.5170	Irritant
benzocaine, 4-aminobenzoic acid, ethyl ester,	H2NC6H4CO2C2H5	S	165.19	88-92			Irritant
benzoic acid	C ₆ H ₅ CO ₂ H	S	122.12	122.4			Irritant
benzoic acid, 4-acetamido	CH3CONHC6H4CO2H	S	179.18	256.5			Irritant
benzoic acid, 4-amino	H2NC6H4CO2H	S	137.14	188-189	1.374		Irritant
benzoic acid, 3-chloro	ClC ₆ H ₄ CO ₂ H	S	156.57	158			Irritant
benzoic acid, 4-chloro	ClC ₆ H ₄ CO ₂ H	S	156.57	243			Irritant
benzoic acid, 3-hydroxy	HOC ₆ H ₄ CO ₂ H	S	138.12	210-203			Irritant
benzoic acid, 4-hydroxy	HOC ₆ H ₄ CO ₂ H	S	138.12	215-217			Irritant
benzoic acid, 2-methyl	CH ₃ C ₆ H ₄ CO ₂ H	S	136.15	103-105			See also o-toluic acid
benzoic acid, 4-methyl	CH ₃ C ₆ H ₄ CO ₂ H	S	136.15	180-182			See also <i>p</i> -toluic acid
benzoic acid, 4-nitro	O2NC6H4CO2H	S	167.12	239-241	1	1	Irritant
benzonitrile	C6H5CN	L	107.12	191	1.010	1.5280	Irritant
benzophenone	(C ₆ H ₅) ₂ CO	S	182.22	49-51	1.010	1.5200	Irritant
benzoyl chloride	C6H5COCl	L	140.57	198	1.211	1.5530	Corrosive, toxic
benzyl alcohol	C ₆ H ₅ CH ₂ OH	L	108.14	205	1.045	1.5400	Irritant, hygroscopic
benzyl amine	C6H5CH2NH2	L	103.14	184-185	0.981	1.5430	Corrosive, lachrymator
benzyl chloride	C6H5CH2NH2 C6H5CH2Cl	L	126.59	179	1.1002	1.5450	Hi.toxic, cancer susp.agent
,	C6H5C6H5	S	120.39	69-71	0.992		Irritant
biphenyl borio soid				09-/1			Irritant, hygroscopic
boric acid	H ₃ BO ₃	S	61.83	a hydrogin - 24	1.435	1	minant, nygroscopic
Brady's Reagent	(NO ₂) ₂ C ₆ H ₃ NHNH ₂	L	See hydrazine, 2,4-dinitrophenyl				
bromine	Br ₂	L	159.82	58.8	3.102		Highly toxic, oxidizer

Table of Reagents

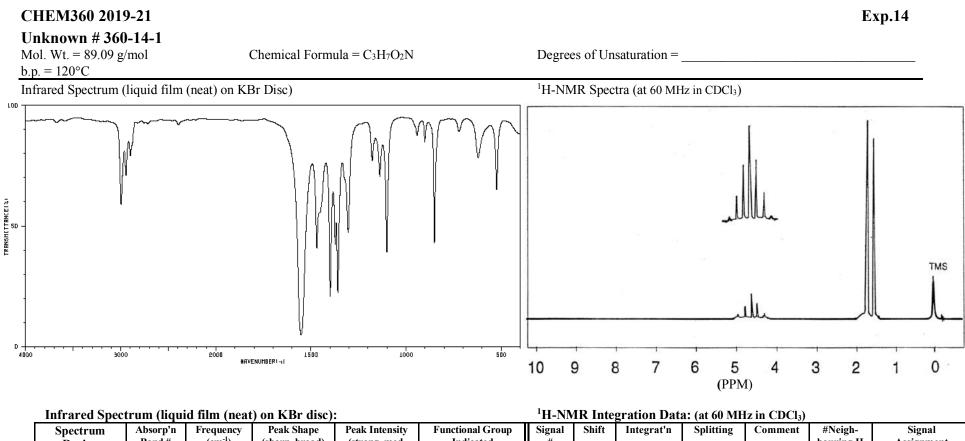
Compound Name	Chemical Formula	Solid (S) or Liquid (L)	Formula Weight	MP or BP (°C)	Density (g/mL)	Refract. Index	Hazardous Properties*
1,3-butadiene, E,E-1,4-diphenyl	C6H5C4H4C6H5	S	206.29	153			Irritant
butane, 1-bromo	CH ₃ CH ₂ CH ₂ CH ₂ Br	L	137.03	101.3	1.276	1.4390	Flammable, irritant
butane, 2-bromo	CH ₃ CH ₂ CHBrCH ₃	L	137.03	91.3	1.255	1.4369	Flammable, irritant
butane, 1-chloro	CH ₃ CH ₂ CH ₂ CH ₂ Cl	L	92.57	78.4	0.886	1.4024	Flammable liquid
butane, 2-chloro	CH ₃ CH ₂ CHClCH ₃	L	92.57	68.2	0.873	1.3960	Flammable liquid
1-butanol	CH ₃ CH ₂ CH ₂ CH ₂ OH	L	74.12	117-118	0.810	1.3990	Flammable, irritant
1-butanol, 3-methyl	(CH ₃) ₂ CH(CH ₂) ₂ OH	L	88.15	130	0.8092	1.4053	Irritant
2-butanol	CH ₃ CH ₂ CHOHCH ₃	L	74.12	99.5-100	0.807	1.3970	Flammable, irritant
2-butanone	CH ₃ CH ₂ COCH ₃	L	72.11	80	0.805	1.3790	Flammable, irritant
2-butanone, 3-hydroxy-3-methyl	(CH ₃) ₂ C(OH)COCH ₃	L	102.13	140-141	0.971	1.4150	Irritant
1-butene, 3-chloro-	CH ₃ CH(Cl)CH=CH ₂	L	90.55	62-65	0.900	1.4155	Flammable, lachrymator
3-buten-2-ol	CH2=CHCH(OH)CH3	L	72.11	96-97	0.832	1.4150	Flammable, irritant
<i>n</i> -butyl butyrate	C ₃ H ₇ CO ₂ C ₄ H ₉	L	144.21	164-165	0.871	1.4060	Irritant
butyric acid	CH ₃ (CH ₂) ₂ CO ₂ H	L	88.11	165.5	0.9577	1.3980	Corrosive, toxic
3-butyn-2-ol, 2-methyl	CH=CC(CH ₃) ₂ OH	L	84.12	104	0.868	1.4200	Flammable, toxic
calcium carbonate	CaCO ₃	S	100.09		2.930		Irritant, hygroscopic
calcium chloride, anhydr.	CaCl ₂	S	110.99		2.150		Irritant, hygroscopic
camphor $(1R, +)$	C10H16O	S	152.24	179-181	0.990	1.5462	Flamm., irritant
carbon dioxide, solid	CO ₂	S	44.01	-78.5(subl.)	0.770	1.0102	Frost bite burns
carbon tetrachloride	CCl ₄	L	153.82	76	1.594		Susp. Cancer agent
charcoal (Norit)	0014	S		rizing agent, used		izations	Irritant
chloroform	CHCl ₃	L	119.38	61.3	1.500	izations	Highly toxic
cinnamaldehyde, <i>trans</i>	C6H5CH=CHCHO	L	132.16	246(decomp)	1.048	1.6220	Irritant
cinnamic acid, trans	C ₆ H ₅ CH=CHCO ₂ H	S	148.16	135-136	1.040	1.0220	Irritant
crotonaldehyde	CH ₃ CH=CHCHO	L	70.09	102.4	0.846	1.4365	Highly toxic, flammab.
Cyclohexane	C ₆ H ₁₂	L	84.16	80.7	0.779	1.4260	Flammable, irritant
cyclohexane, bromo	C ₆ H ₁₁ Br	L	163.06	166.2	1.324	1.4950	Flammable, irritant
cyclohexane, methyl	C ₆ H ₁₁ CH ₃	L	98.19	100.2	0.770	1.4220	Flammable, irritant
cyclohexene	C6H10	L	82.15	83	0.811	1.4460	Flammable, irritant
cyclohexanol	C ₆ H ₁₁ OH	L	100.16	161.1	0.963	1.4650	Irritant, hygroscopic
cyclohexanone	C ₆ H ₁₀ (=O)	L	98.15	155.6	0.947	1.4500	Corrosive, toxic
cyclohexanone, 4-methyl	CH ₃ C ₆ H ₉ (=O)	L	112.17	170	0.914	1.4460	Corrosive, toxic
cyclopentane	C5H10	L	70.14	49.5	0.751	1.4000	Flammable, irritant
cyclopentane, bromo	C ₅ H ₉ Br	L	149.04	137-138	1.390	1.4881	Flammable
cyclopentanone	C ₅ H ₈ (=O)	L	84.12	130.6	0.951	1.4370	Flammable, irritant
2 <u>1</u>							· · · · · · · · · · · · · · · · · · ·
dichloromethane	CH ₂ Cl ₂	L	84.93 74.12	40.1	1.325	1.4240	Toxic, irritant
diethyl ether (see ethyl ether)	C2H5OC2H5	L		34.6	0.708	1.3530	Flammable, toxic
1,4-dioxane	C ₄ H ₈ O ₂	L	88.11	100-102	1.034	1.4220	Flamm., cancer susp.agent
diphenylmethanol	(C ₆ H ₅) ₂ CH(OH)	S	184.24	65-67			Irritant
ethyl acetate	CH ₃ CO ₂ C ₂ H ₅	L	88.11	76-77	0.902	1.3720	Flammable, irritant
ethyl alcohol, anhydrous	CH ₃ CH ₂ OH	L	46.07	78.5	0.785	1.3600	Flammable, poison
ethyl ether, absolute	CH ₃ CH ₂ OCH ₂ CH ₃	L	74.12	34.6	0.708	1.3530	Flammable, irritant
fluorene	C13H10	S	166.22	114-116			Irritant
formaldehyde (sol'n)	НСНО	L	30.03	96	1.083	1.3765	suspect. Cancer agent
formamide, N,N-dimethyl	HCON(CH ₃) ₂	L	73.10	149-156	0.9487	1.4310	suspect. Cancer agent
furfuryl amine	(C ₄ H ₃ O)CH ₂ NH ₂	L	97.12	145-146	1.099	1.4900	Irritant
gold	Au	S	196.97	1064	19.28		Expensive/valuable
<i>n</i> -hexane	CH ₃ (CH ₂) ₄ CH ₃	L	86.18	69	0.659	1.3750	Flammable, irritant
hydrazine, 2,4-dinitrophenyl	(NO ₂) ₂ C ₆ H ₃ NHNH ₂	70% soln	198.14				Flammable, irritant
hexanes	C ₆ H ₁₄	L	86.18	68-70	0.672	1.3790	Flammable, irritant
hydrochloric acid, conc. 12 M	HCl	L	36.46		1.20		Corrosive, highly toxic

Table of Reagents

Compound Name	Chemical Formula	Solid (S) or Liquid (L)	Formula Weight	MP or BP (°C)	Density (g/mL)	Refract. Index	Hazardous Properties*
iodine	I ₂	S	253.81	133	4.930		Corrosive, highly toxic
isoamyl acetate (isopentyl acetate)	CH ₃ CO ₂ C ₅ H ₁₁	L	130.19	142	0.8670	1.4000	Flammable, irritant
isoamyl alcohol	(CH3)2CH(CH2)2OH	L					(see 1-butanol, 3-methyl-)
isopentyl alcohol	(CH ₃) ₂ CH(CH ₂) ₂ OH	L					(see 1-butanol, 3-methyl-)
lichen		S					Allergin
ligroin (high bp petrol. Ether)	C6-C7 (light naphtha)	L		60-80	0.656	1.3760	Flammable, irritant
Lucas Reagent		Solution	of hydrochlori	c acid/zinc chlorid			Toxic, irritant
magnesium (metal)	Mg	S	24.31	651	1.75		Flammable
magnesium oxide	MgO	S	40.31	001	3.58		Moist. Sens., irritant
magnesium sulfate, anhydrous	MgSO ₄	S S	120.37		2.660		Hygroscopic
magnesium sulfate, 7-hydrate	MgSO ₄ .7H ₂ O	S	246.48		1.670		(92psom salt)
manganese dioxide	MnO ₂	S	86.94	535 (dec.)	5.026		Oxidizer, irritant
methanol, anhyd.	CH ₃ OH	L	32.04	64.5	0.791	1.3290	High. Toxic, flammable
methanol, diphenyl	(C ₆ H ₅) ₂ CH(OH)	S	184.24	69	0.771	1.5270	Irritant
methanol, triphenyl	(C ₆ H ₅) ₂ C(OH)	S	260.34	164.3			Irritant
methylene chloride	CH2Cl2	L	84.93	40.1	1.325	1.4230	See dichlormethane
2	C112C12 C12-C14	L	04.95	179-210	0.752	1.4230	Flammable, irritant
mineral spirits (light kerosene)			100.17		0.752	1.4240	/
naphthalene	C10H8	S	128.17	80.5	1.400		Flamm., susp.cancer agent
nitric acid (conc. 15.4 M)	HNO3	L	63.01		1.400		Corrosive, oxidizer
2-octanone	CH ₃ (CH ₂) ₅ COCH ₃	L	128.22	173	0.819	1.4150	Irritant
pentane	C5H12	L	72.15	36.1	0.626	1.3580	Flammable, irritant
3-pentanol	C2H5CH(OH)C2H5	L	88.15	115/749mm	0.815	1.4100	Flammable, irritant
3-penten-2-one, 4-methyl	(CH ₃) ₂ C=CHCOCH ₃	L	98.15	129	0.858	1.4450	Flammable, lachrymator
petroleum ether, (Skelly B)	Mixt. Of C5-C6	L		35-60	0.640		Flammable, toxic
petroleum ether, hi bp (ligroin)	Mixt. Of C6-C7	L		60-80	0.656	1.3760	Flammable, toxic
phenethyl alcohol	C ₆ H ₅ CH ₂ CH ₂ OH	L	122.17	221/750mm	1.023	1.5320	Toxic, irritant
phenol	C ₆ H ₅ OH	S	94.11	40-42	1.071		Highly toxic, corrosive
phenol, 2,4-dimethyl	(CH ₃) ₂ C ₆ H ₃ OH	S	122.17	22-23	1.011	1.5380	Corrosive, toxic
phenol, 2,5-dimethyl	(CH ₃) ₂ C ₆ H ₃ OH	Š	122.17	75-77	0.971		Corrosive, toxic
phenylacetylene	C ₆ H ₅ C≡CH	L	102.14	142-144	0.930	1.5490	Flamm., cancer susp.agent
phenylmagnesium bromide	C ₆ H ₅ MgBr	L	181.33	112 111	1.134	1.5 190	Flammable, moist.sensit.
phosphoric acid (85%, 14.7 M)	H ₃ PO ₄	L	98.00		1.685		Corrosive
potassium chromate	K ₂ CrO ₄	S	194.20	968	2.732		Canc.susp.agent, oxidizer
potassium circomate	K2Cr2O7	S	294.19	398	2.732		Hi.toxic, canc.susp.agent
				598			
potassium hydroxide	KOH	S	56.11	(01	3.130		Corrosive, toxic
potassium iodide	KI	S	166.01	681			Moist.sens., irritant
potassium permanganate	KMnO ₄	S	158.04	d<240	2.703	1.00.40	Oxidizer, corrosive
propane, 2-chloro, 2-methyl	(CH ₃) ₃ CCl	L	92.57	50	0.851	1.3848	Flammable
propane, 2-nitro	(CH ₃) ₂ CHNO ₂	L	89.09	120	0.992	1.3940	Canc.susp.agent, flamm.
propanoic acid (or propionic acid)	CH ₃ CH ₂ CO ₂ H	L	74.08	141	0.9930	1.3869	Corrosive, toxic
1-propanol	CH ₃ CH ₂ CH ₂ OH	L	60.11	97.4	0.8035	1.3850	Flammable, irritant
1-propanol, 2-methyl-	(CH ₃) ₂ CHCH ₂ OH	L	74.12	108.1	0.8018	1.3955	Flammable, irritant
2-propanol, 2-methyl-	(CH ₃) ₃ COH	L	74.12	82.3	0.7887		Flammable, irritant
propionate, ethyl	C2H5CO2C2H5	L	102.13	99	0.891	1.3840	Flammable, irritant
propionic acid	C ₂ H ₅ CO ₂ H	L	74.08	141	0.993	1.3860	Corrosive, toxic
rosaniline hydrochloride	C20H14(NH2)3Cl	Solution	337.86	250 (dec)			Susp. cancer agent
salicylic acid	HOC ₆ H ₄ CO ₂ H	S	138.12	158-160			Toxic, irritant
salicylic acid, acetate ester	CH ₃ CO ₂ C ₆ H ₄ CO ₂ H	Š	180.16	138-140	İ	1	Irritant, toxic
Schiff's Reagent		Solution		niline hydrochlori	de & sulfur	dioxide	Toxic
silane, tetramethyl	Si(CH ₃) ₄	L	88.23	26-28	0.648	1.3580	Flammable, hygroscopic
silica, sand	SiQ2	S	60.09	NA	0.040	1.5500	abrasive
silver nitrate	AgNO ₃	S	169.88	212	4.352		Highly toxic, oxidizer
	CH ₃ CO ₂ Na	S S	82.03	212	4.332		hygroscopic
sodium acetate sodium acetate, trihydrate	CH ₃ CO ₂ Na 3H ₂ O	S S	82.03 136.08	58	1.45		hygroscopic Hygroscopic

Table of Reagents

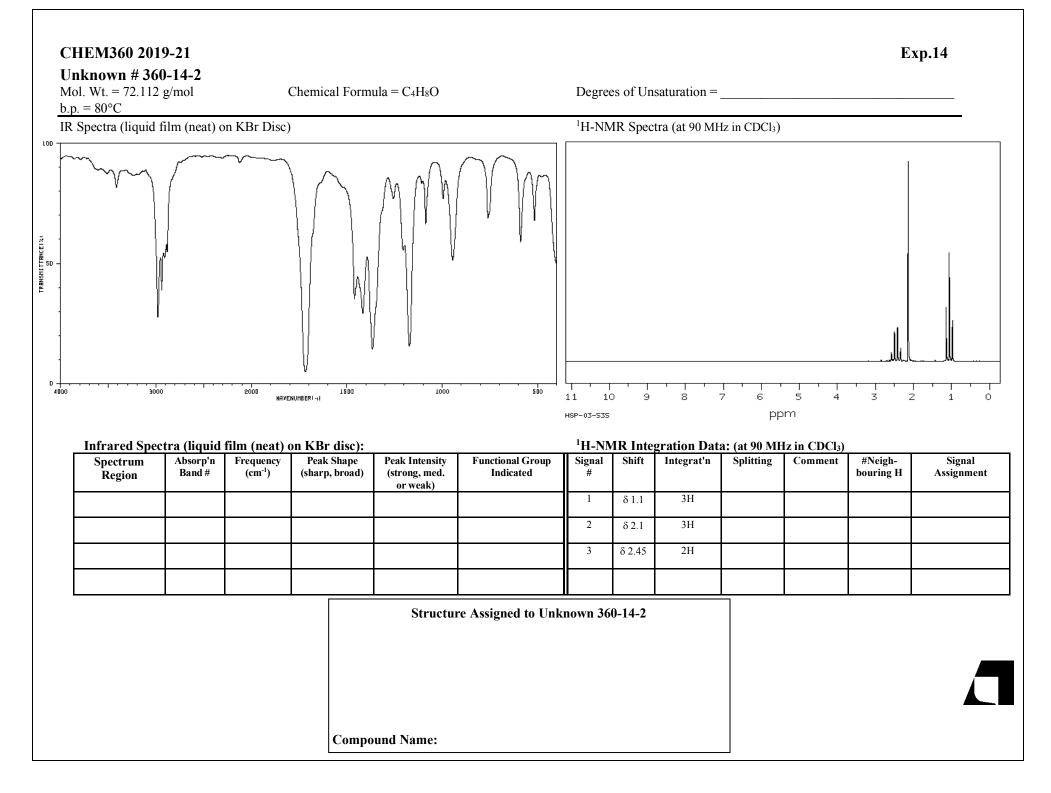
Compound	Chemical	Solid (S) or	Formula	MP or BP	Density	Refract.	Hazardous
Name	Formula	Liquid (L)	Weight	(°C)	(g/mL)	Index	Properties*
sodium bisulfite	NaHSO ₃	S			1.480		Severe irritant
sodium borohydride	NaBH ₄	S	37.38	400			Flam. solid, corrosive
sodium bicarbonate	NaHCO ₃	S	84.01		2.159		Moist. sensitive
sodium carbonate	Na ₂ CO ₃	S	105.99	851	2.532		Irritant, hygroscopic
sodium chloride	NaCl	S	58.44	801	2.165		Irritant, hygroscopic
sodium dichromate, dihydrate	Na ₂ Cr ₂ O ₇ .2H ₂ O	S	298.00		2.350		Hi.toxic, cancer susp.agent
sodium hydrogen carbonate	NaHCO ₃	S	84.01		2.159		See sodium bicarbonate
sodium hydroxide	NaOH	S	40.00				Corrosive, toxic
sodium iodide	NaI	S	149.89	661	3.670		Moist.sens., irritant
sodium metabisulfite	Na ₂ S ₂ O ₅	S	190.10		1.480		Moist.sens., toxic
sodium methoxide	NaOCH ₃	S	54.02				Flam. solid, corrosive
sodium sulfate	Na ₂ SO ₄	S	142.04	884	2.680		Irritant, hygroscopic
styrene	C ₆ H ₅ CH=CH ₂	L	104.15	146	0.909		Flammable
styrene, β-bromo	C ₆ H ₅ CH=CHBr	L	183.05	112/20mm	1.427	1.6070	Irritant
sucrose	C12H22O11	S	342.30	185-187	1.5805		Tooth Decay!
sulfur dioxide	SO ₂	Gas	64.06	-10 bp			Nonflamm, corrosive
sulfuric acid (conc. 18 M)	H ₂ SO ₄	L	98.08	^	1.840		Corrosive, oxidizer
sulfurous acid	H ₂ SO ₃	L	82.08		1.030		Corrosive, toxic
L-tartaric acid	HO ₂ CC ₂ H ₂ (OH) ₂ CO ₂ H	S	150.09	171-174			Irritant
tetrahydrofuran	C4H8O	L	72.11	65-67	0.889	1.4070	Flammable, irritant
tetramethylsilane	Si(CH ₃) ₄	L	88.23	26-28	0.648	1.3580	Flammable, hygroscopic
tin	Sn	S	118.69		7.310		Flammable solid, moist.sens.
Tollen's Reagent		L	See an	nmonia + silver ni	trate		
toluene	C ₆ H ₅ CH ₃	L	92.14	110.6	0.867	1.4960	Flammable, toxic
toluene, 4-nitro	NO ₂ C ₆ H ₄ CH ₃	S	137.14	52-54	1.392		Hi.toxic, irritant
o- or 2-toluic acid	CH ₃ C ₆ H ₄ CO ₂ H	S	136.15	103-105			Probable irritant
<i>p</i> - or 4-toluic acid	CH ₃ C ₆ H ₄ CO ₂ H	S	136.15	180-182			Probable irritant
triethylphosphite	$(C_2H_5O)_3P$	L	166.16	156	0.969	1.4130	Moist. sens., irritant
triphenylmethanol	$(C_6H_5)_3C(OH)$	S	260.34	164.3			Probable irritant
urea	NH ₂ CONH ₂	S	60.06	135	1.335		Irritant
(-) usnic acid	C18H16O7	S	344.32	198			Toxic
(+) usnic acid	C18H16O7	S	344.32	201-203			Toxic
water	H ₂ O	L	18.02	100		1.33	Will burn skin when hot
water, ice	H ₂ O	S/L	18.02	0	1.00		Frostbite, hypothermia
xylenes	CH ₃ C ₆ H ₄ CH ₃	L	106.17	137-144	0.860	1.4970	Flammable, irritant
zinc, dust	Zn	S	65.37	419.5			Flammable, moist.sens.
zinc, dust	ZnCl ₂	S	136.28	283	2.91		Corrosive, toxic

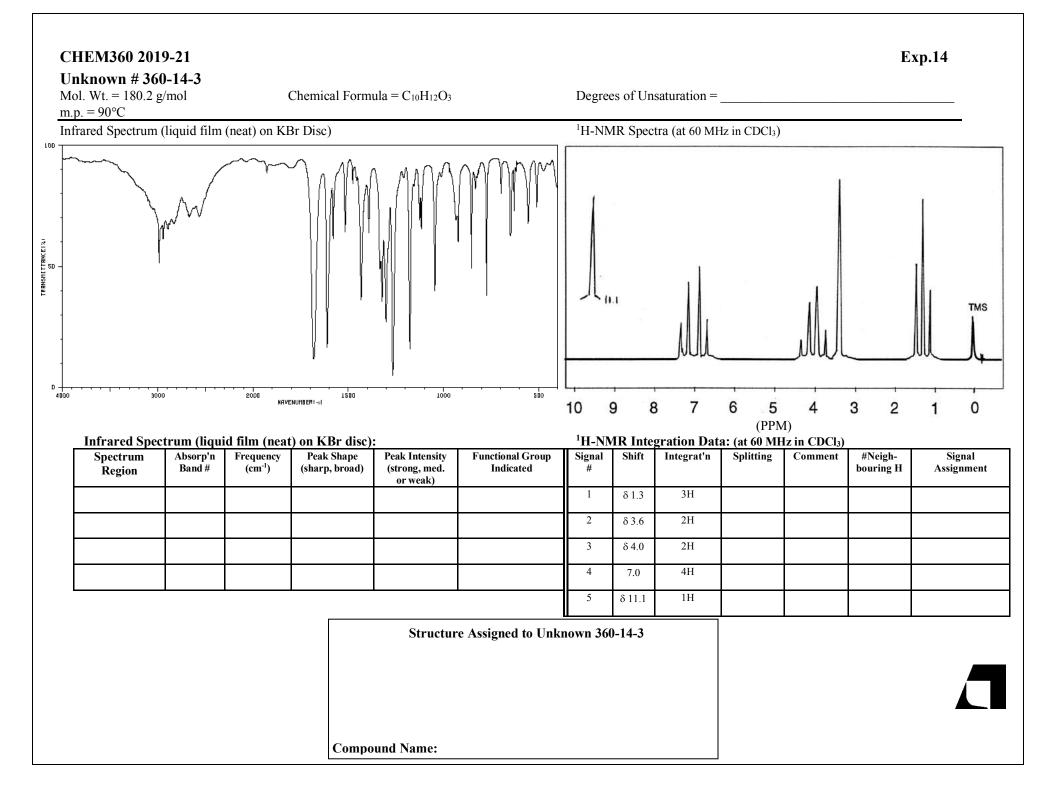

*Be sure to consult the chemical's MSDS for more specific detail on hazardous properties.

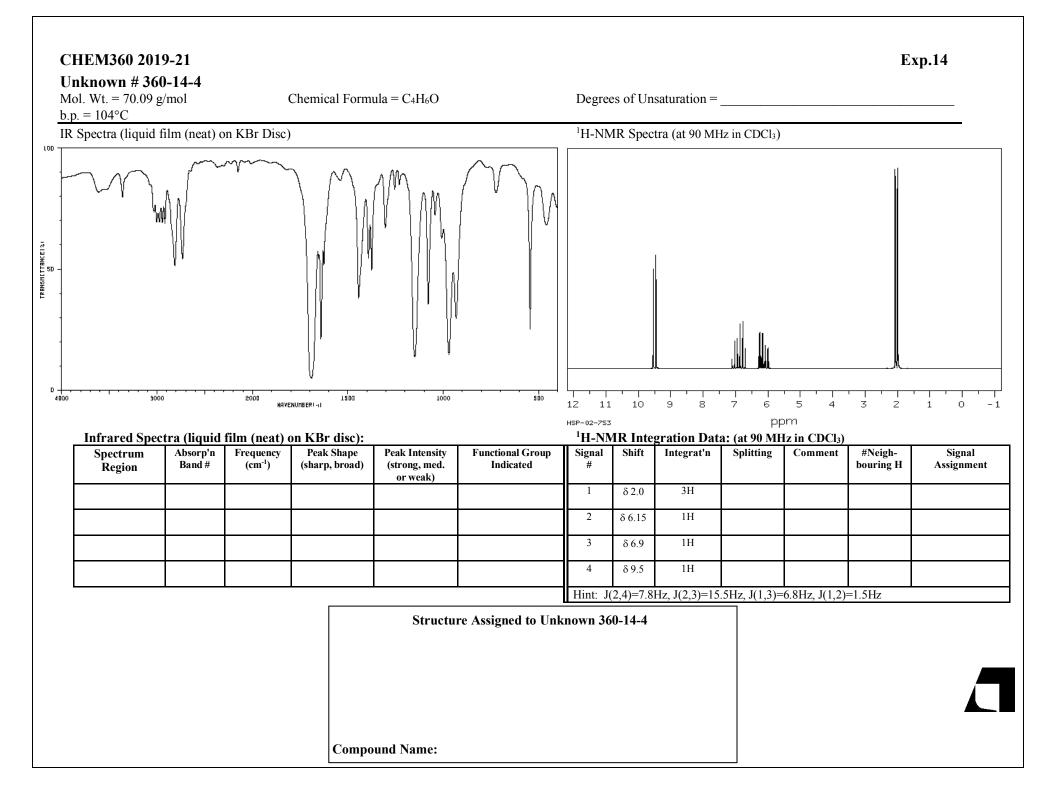
Athabasca University CHEM360/Labc360-Organic Chemistry II PRELAB ANSWERS (2019-21)

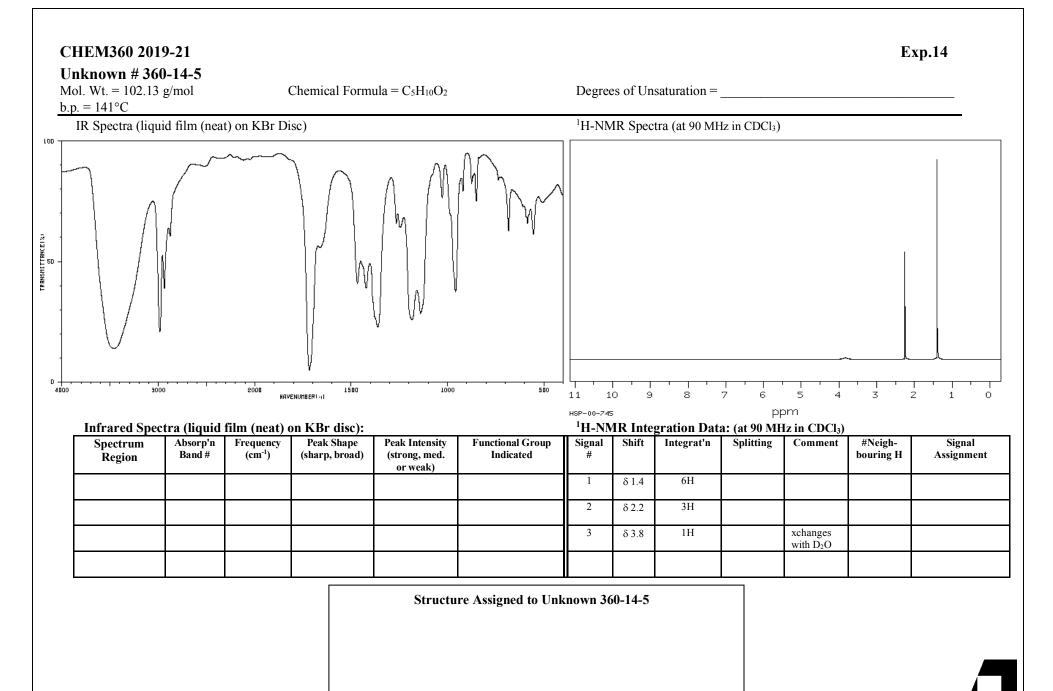
http://science.pc.athabascau.ca/chem360.nsf

(Click on 'CHEM360 Prelab Questions' in the side menu)

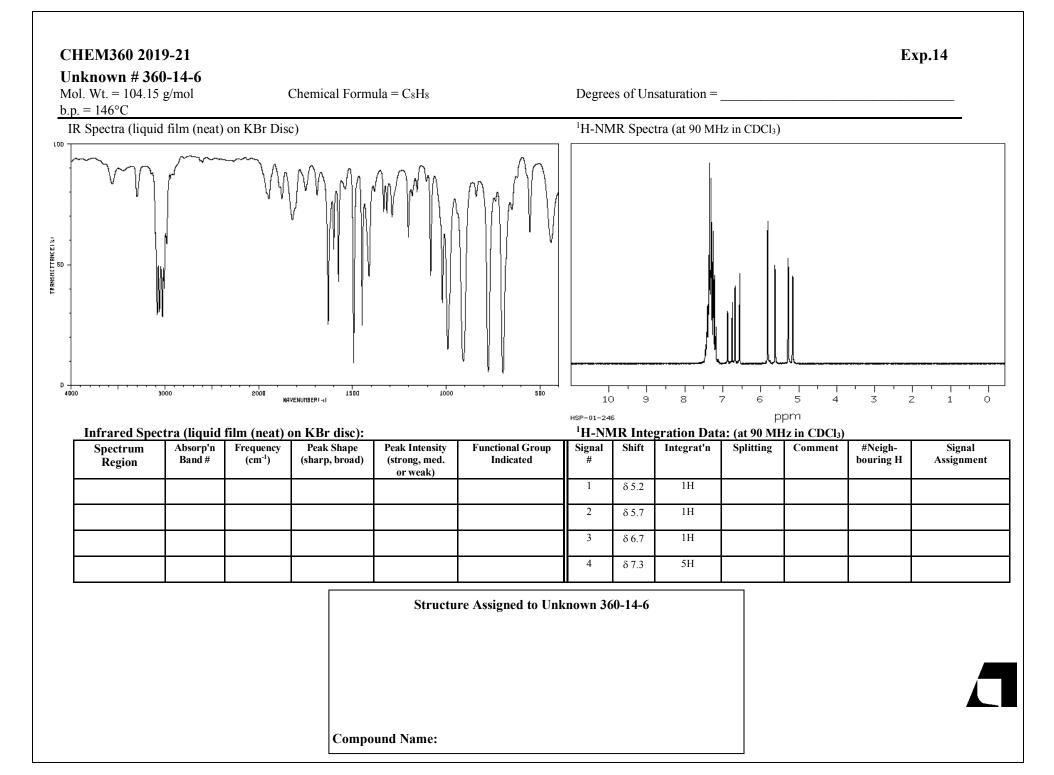

Question	Exp.10	Exp. 11	Exp. 12	Exp. 13	Exp.14	Exp. 15	Exp. 16	Exp. 17
1	с	b	а	b	b	с	а	b
2	b	а	а	а	d	а	а	а
3	а	с	а	с	а	с	b	b
4	с	d	с	с	а	b	с	с
5	а	с	b	с	а	с	b	b
6	с	а	b	b	b	с	b	с
7	b	b	а	b	b	а	b	а
8	d	b	а	а	с	а	а	а
9	с	b	b	b	а	с	с	с
10	а	а	a	d	а	с	b	b

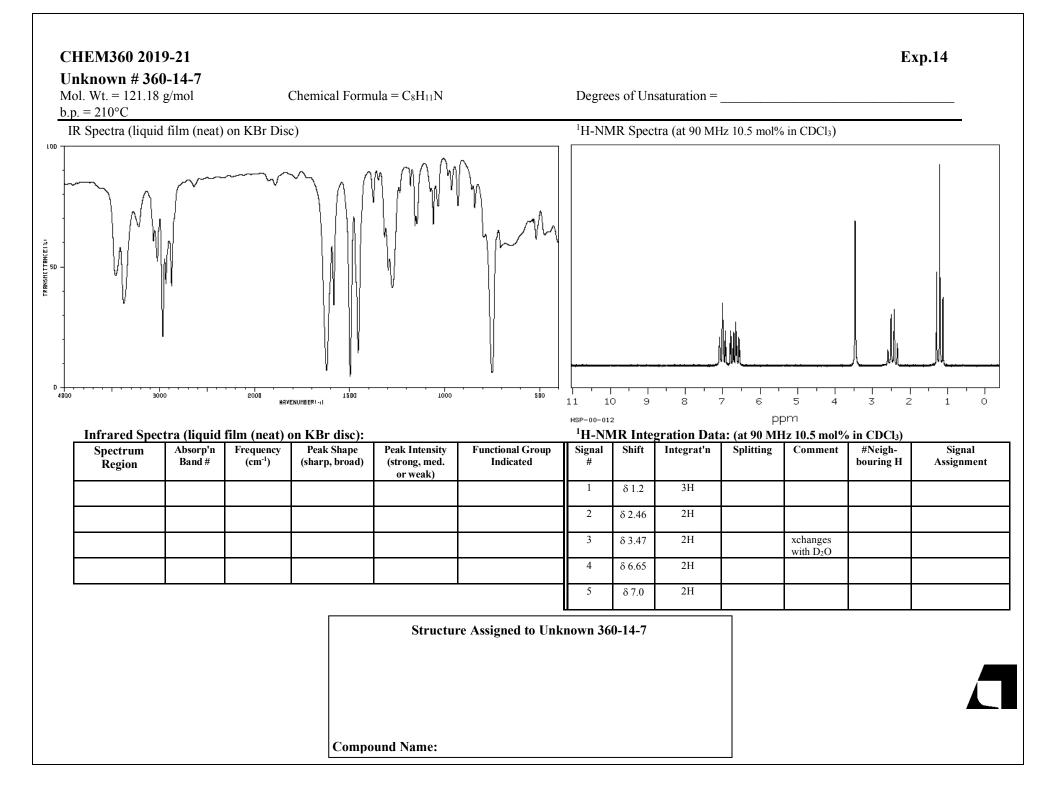


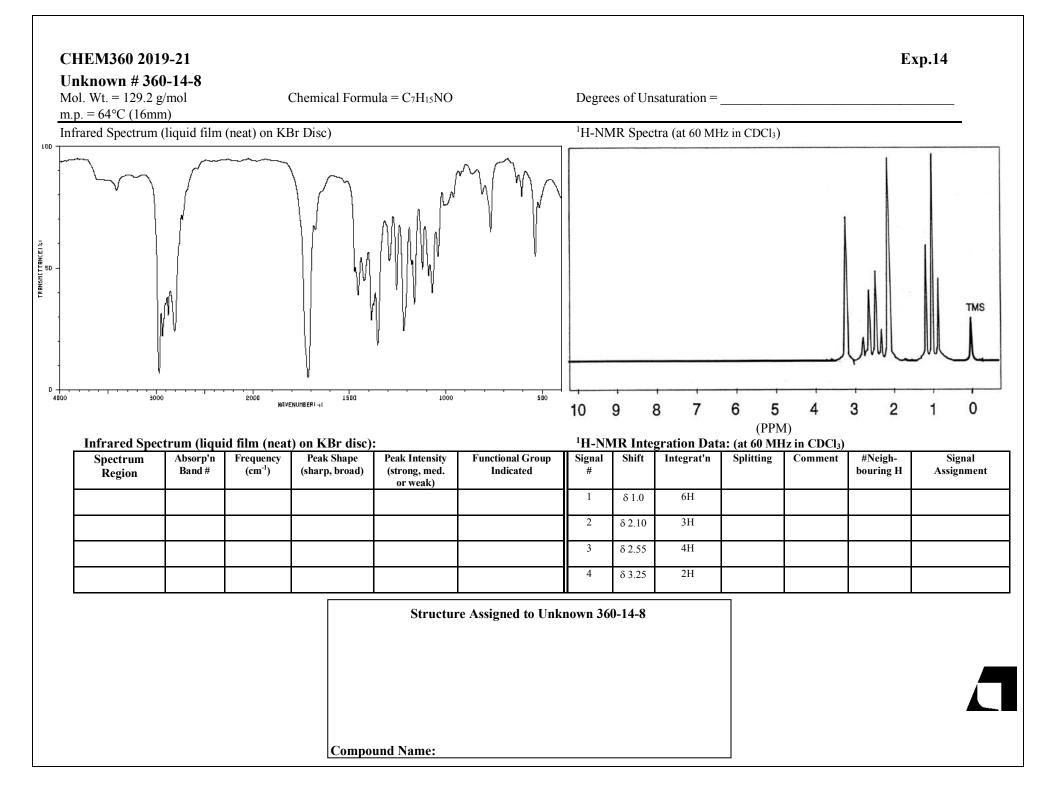

Spectrum Region	Absorp'n Band #	Frequency (cm ⁻¹)	Peak Shape (sharp, broad)	Peak Intensity (strong, med. or weak)	Functional Group Indicated	Signal #	Shift	Integrat'n	Splitting	Comment	#Neigh- bouring H	Signal Assignment
						1	δ 1.6	6H				
						2	δ 4.65	1H				

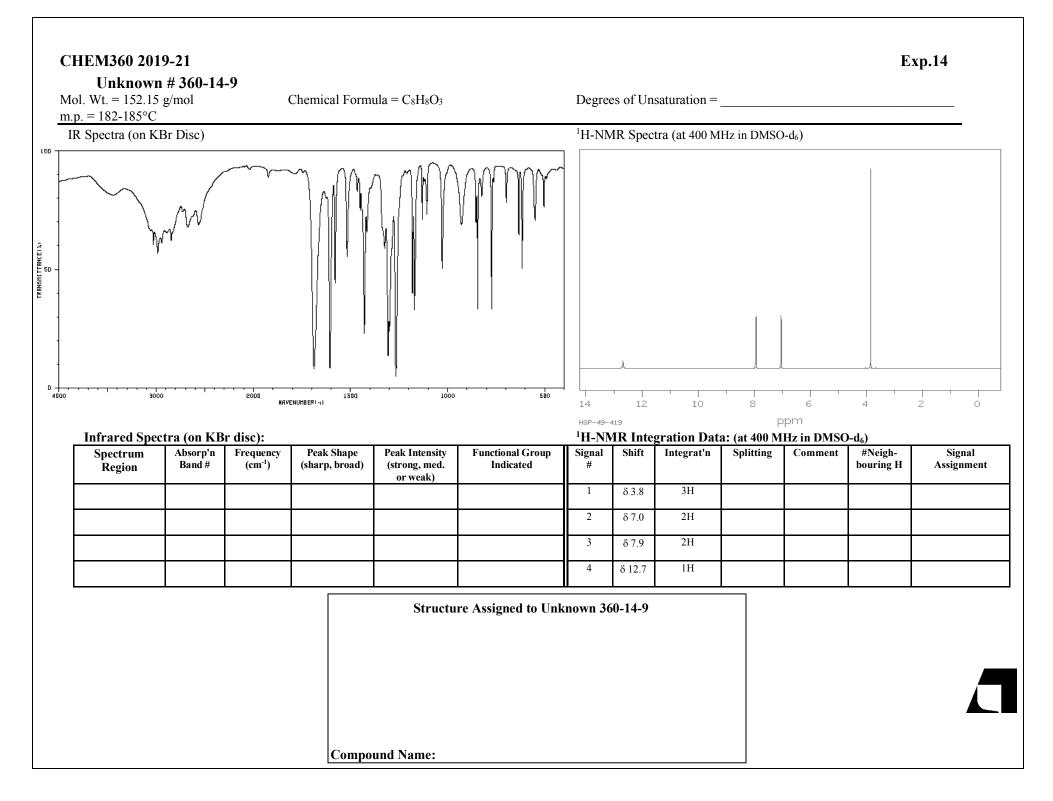

Structure Assigned to Unknown 360-14-1

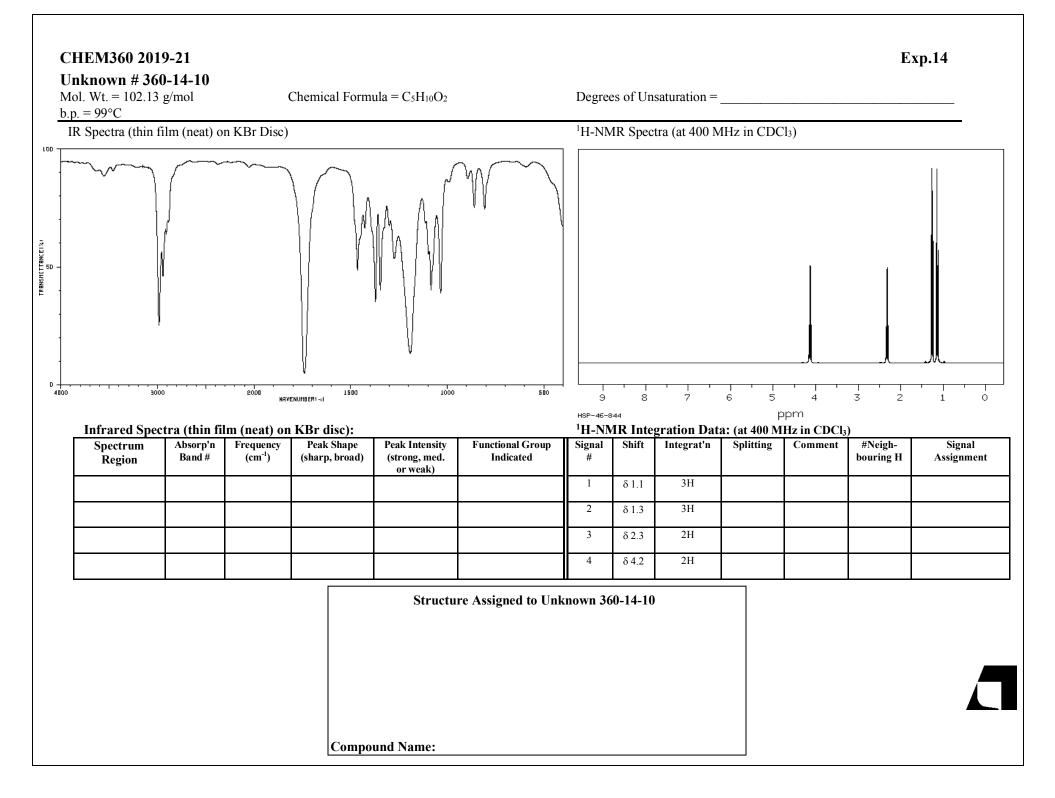
Compound Name:

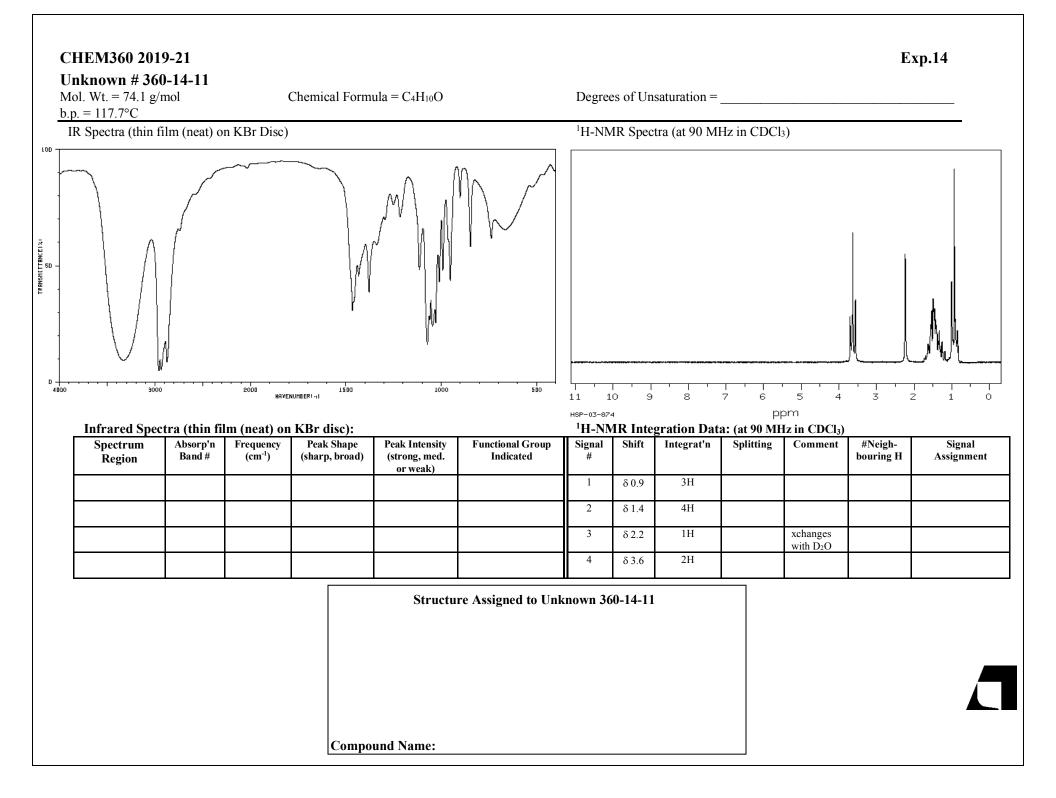


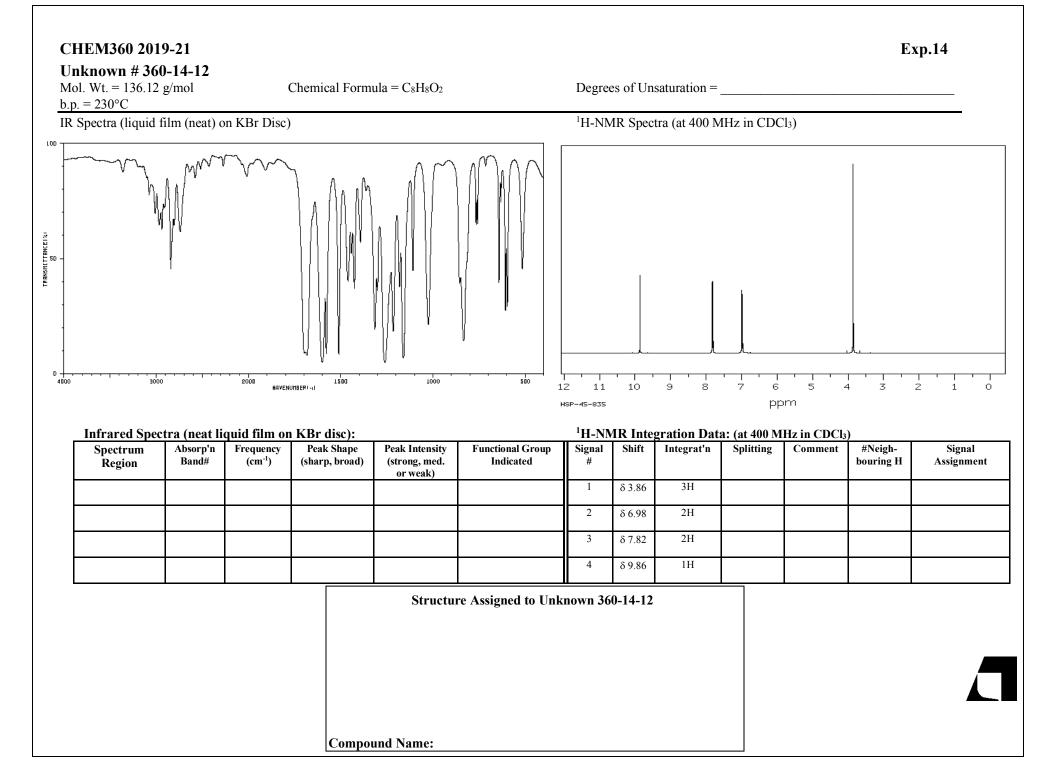


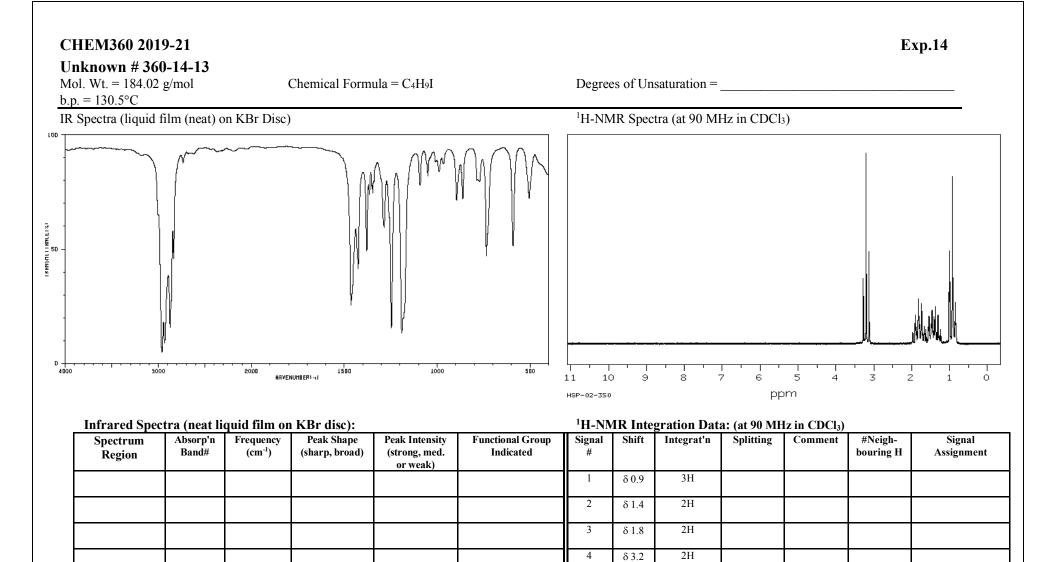


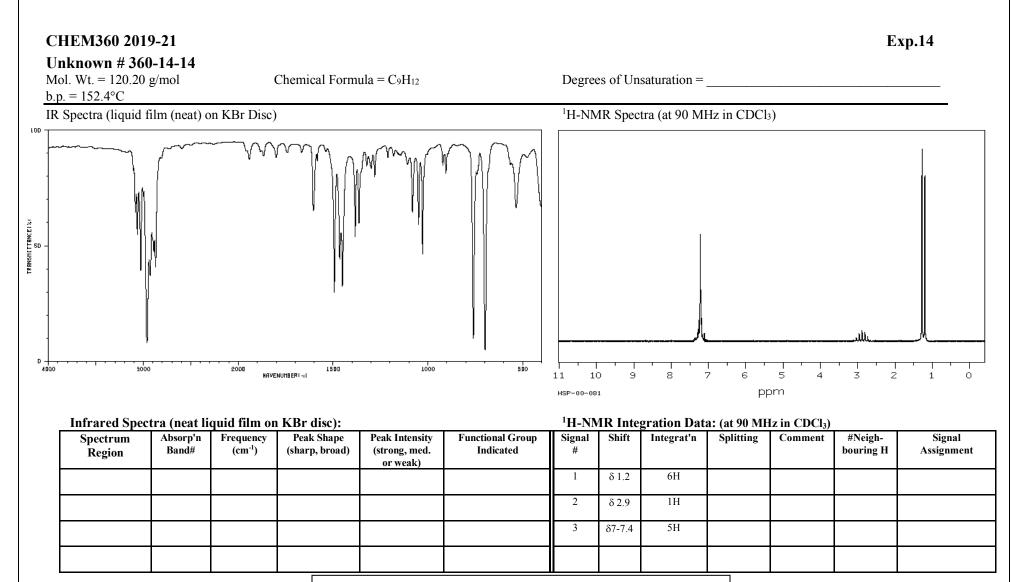


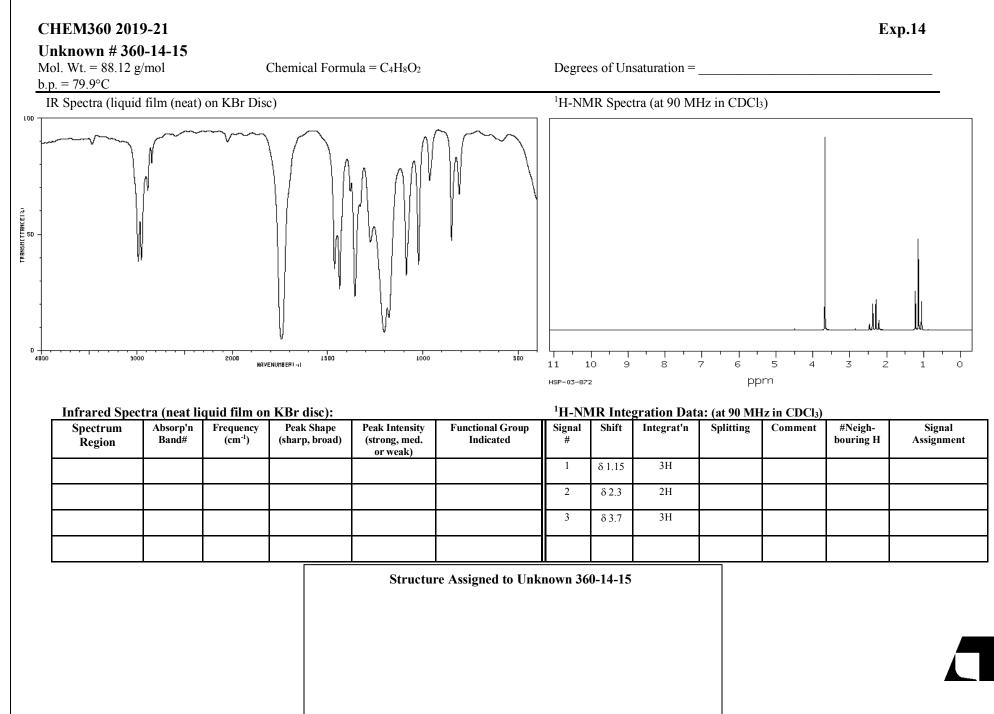

Compound Name:

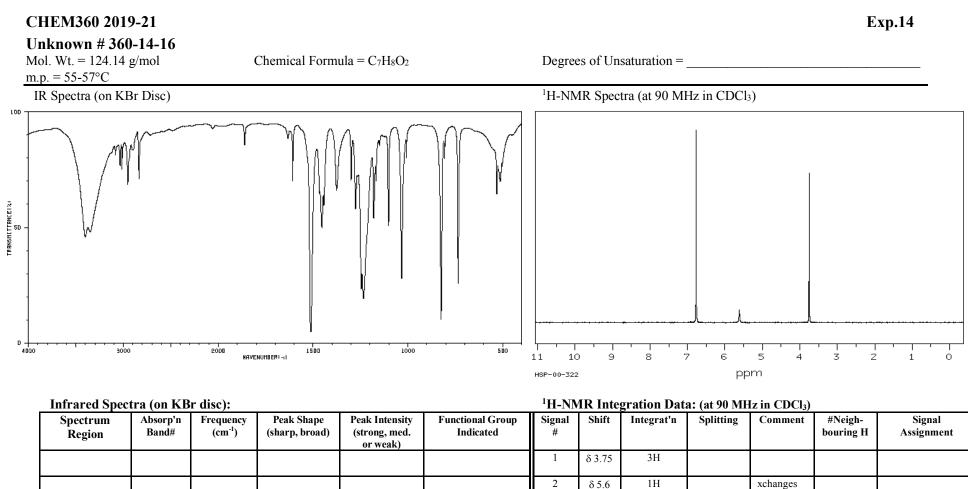




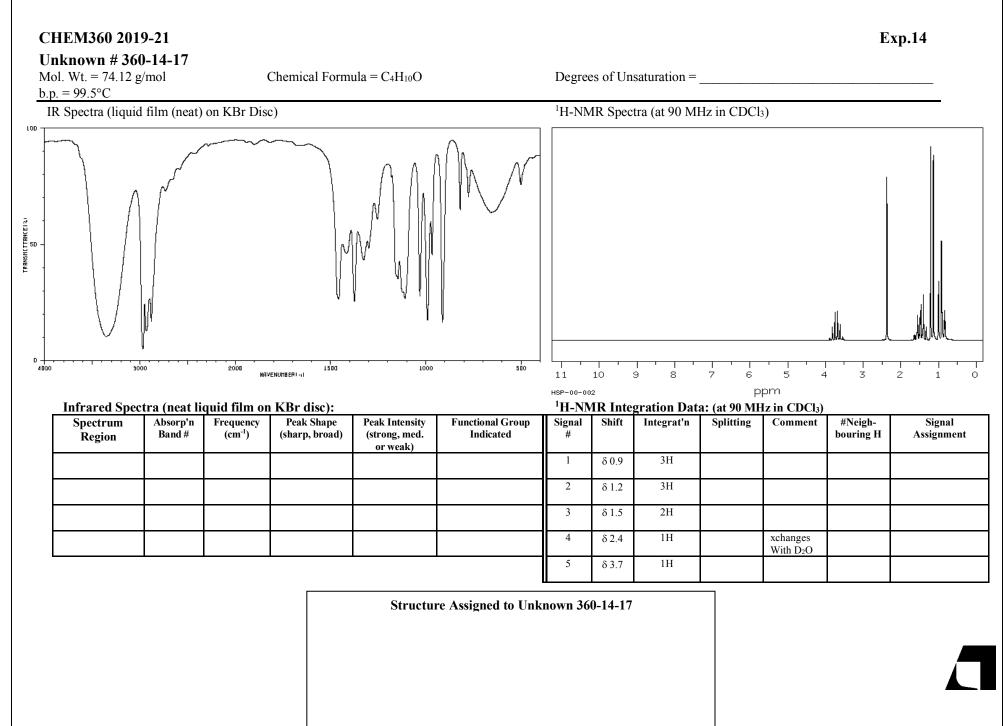


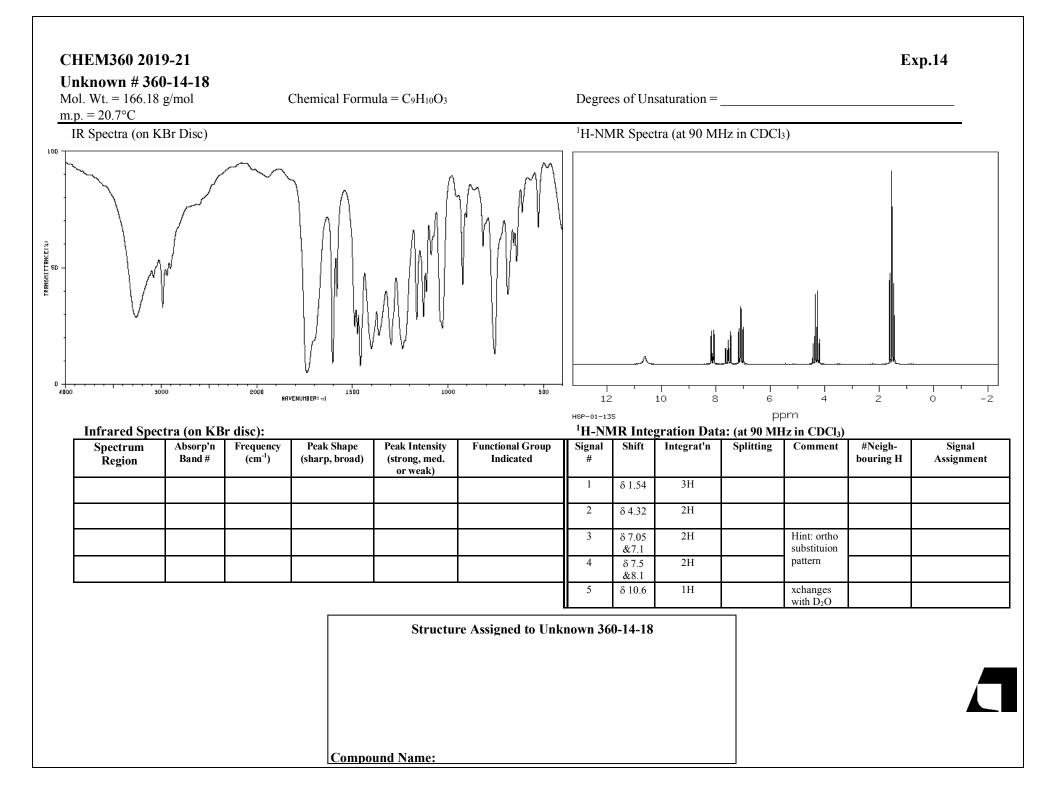


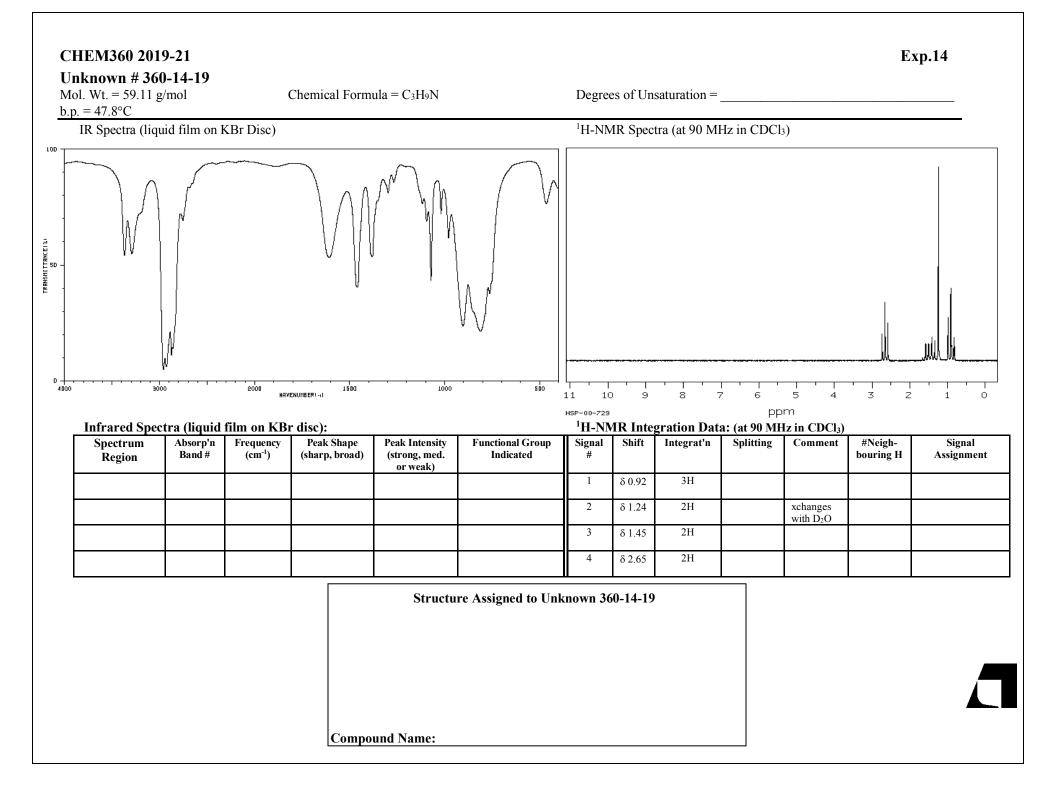


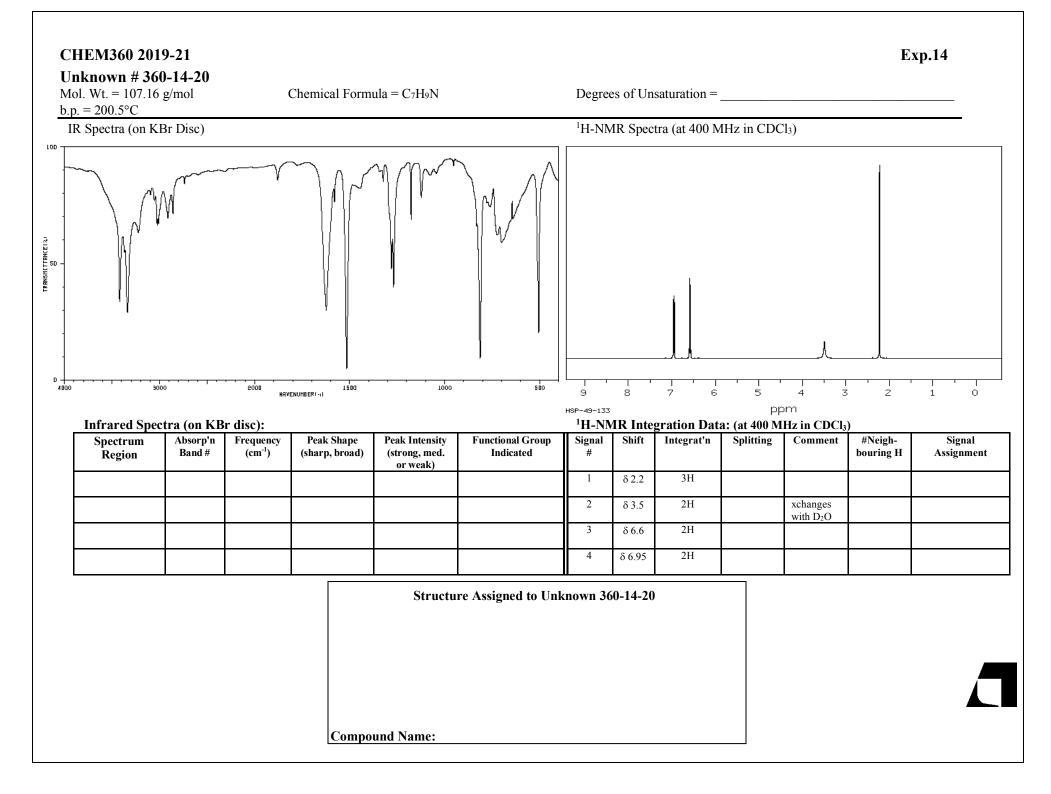


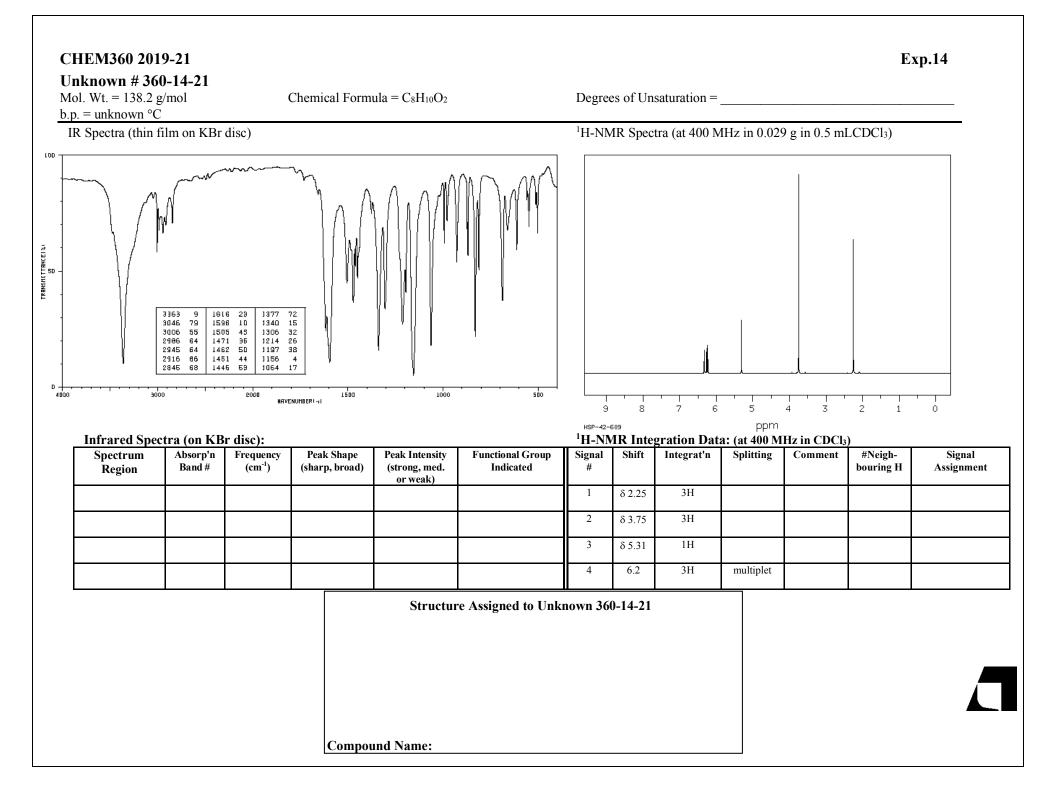
Structure Assigned to Unknown 360-14-13

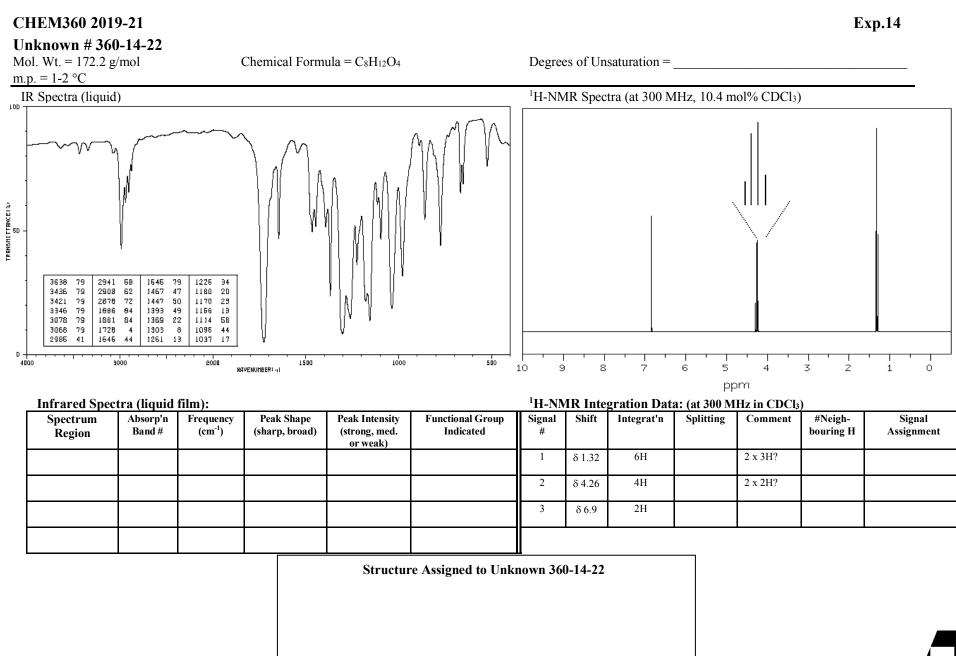



Structure Assigned to Unknown 360-14-14






2 \$ 5.6 1H xchanges With D2O 3 \$ 6.8 4H 1 Structure Assigned to Unknown 360-14-16



DATE: _____

CHEM360 ORGANIC CHEMISTRY II Athabasca University **A** PREPARATION, PERFORMANCE, AND PRODUCT EVALUATION FORM*

STUDENT NAME: ______ STUDENT ID#:

	PRODUCT SUBMITTED	DATE SUBMITTED**	QUANTITY (units?)	PRODUCT CHARACTERISTICS						EXPERIMENT	INSTR.
EXP.#				APPEARANCE	M.P./B.P.	IR (Y/N)	TLC	OTHER	B.PRESS.	GRADE	INIT.
10	ESTER =						N/A				
	carboxylic acid=						N/A		N/A		
(5 marks)	alcohol=						N/A		N/A		
11	FUNCTIONAL GROUPS	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	
(0 marks)	ALCOHOLS AND ALKYL HALIDES								N/A		
12	DIPHENYLMETHANOL						Rf=		N/A		
	DIPHENYLMETHANOL (crude)						Rf=		N/A		
(5 marks)	BENZOPHENONE						Rf=	N/A	N/A		
13	ALDOL CONDENSATION*						N/A		N/A		
	aldehyde=						N/A		N/A		
(10 marks)	ketone=						N/A		N/A		
14	IR/NMR TUTORIAL	N/A	N/A	N/A	N/A	N/A	N/A	submit 4	N/A	N/A	
(0 marks)	Unknowns^^=										
15	FUNCTIONAL GROUPS	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	
(0 marks)	ALDEHYDES AND KETONES										
16	TRIPHENYLMETHANOL					N/A	Rf=				
	TRIPHENYLMETHANOL (crude)	N/A	N/A		N/A	N/A	Rf=	N/A	N/A		
	MOTHER LIQUOR	N/A	N/A		N/A	N/A	Rf=	N/A	N/A		
	BIPHENYL	N/A	N/A		N/A	N/A	Rf=	N/A	N/A		
(10 marks)	Amt.Bromobenzene = , Amt.Ethyl benze	pate =			N/A	N/A	N/A	N/A	N/A		
17	4'-METHYLACETANILIDE	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A		
	4'-ACETOAMIDOBENZOIC ACID^				N/D	N/A	N/A		N/A		
(~7 ea.)	4-AMINOBENZOIC ACID^^					N/A	N/A		N/A		
(20 marks)	BENZOCAINE^^^					N/A	N/A				
	^Part C Amt. 4'-methylacetanilide used =			^^^Part E Amt. 4-aminobenzoic acid used =					Total=		
	^^Part D Amt. 4'-acetamidobenzoic ac	id used =							(/50)		

N/A = not applicable, N/D = not determined

* This form is the official results form for Chem360. To get credit for the lab it must be fully completed and then initialed by the instructor. Keep safe at all times.

** Lab reports are due 1 month after completion of each experiment. Late lab reports typically lose 10% per month late.

***This form will not be signed until the student has done a complete cleanup of their bench area.

^^CHEM360 H-NMR Unknowns are to be downloaded from: http://science.athabascau.ca/Labs/resources/organic_chemistry.php (username= auchem360, password = synthesis)