Common Vertical Force and Bending Moment Diagrams

Beam Type	Simple	Simple	Simple	Simple	Simple	Fixed at Both Ends	Fixed at Both Ends	Cantilever	Cantilever
Free Body Diagram Vertical Force (V) or Shear Diagram Bending Moment (M) Diagram									
Load	Concentrated Load at Centre	Concentrated Load at Any Point	2 Unequal Concentrated Loads Unsymmetrically Placed	Uniformly Distributed Load	Load Increasing Uniformly Towards One End	Concentrated Load at any Point	Uniformly Distributed Loads	Concentrated Load at any Point	Uniformly Distributed Loads
Connectors	Pin and Roller	Fixed	Fixed	Cantilever	Cantilever				
Reactions	$R=V$	$\begin{aligned} & R_{1}=V_{1} \\ & R_{2}=V_{2} \end{aligned}$	$\begin{aligned} & R_{1}=V_{1} \\ & R_{2}=V_{2} \end{aligned}$	$R=V$	$\begin{aligned} & R_{1}=V_{1} \\ & R_{2}=V_{2} \end{aligned}$	$\begin{aligned} & R_{1}=V_{1} \\ & R_{2}=V_{2} \end{aligned}$	$R=V$	$R=V$	$R=V$
Vertical Force	$V=\frac{P}{2}$	$\begin{aligned} & V_{1}=\frac{P b}{l} \\ & V_{2}=\frac{P a}{l} \end{aligned}$	$\begin{aligned} & V_{1}=\frac{P_{1}(l-a)+P_{2} b}{l} \\ & V_{2}=\frac{P_{2}(l-b)+P_{1} a}{l} \end{aligned}$	$V=\frac{w l}{2}$	$\begin{gathered} V_{1}=\frac{W}{3} \\ V_{2}=\frac{2 W}{3} \\ \text { where } W=\frac{w l}{2} \end{gathered}$	$\begin{aligned} & V_{1}=\frac{P b^{2}(3 a+b)}{l^{3}} \\ & V_{2}=\frac{P a^{2}(3 b+a)}{l^{3}} \end{aligned}$	$V=\frac{w l}{2}$	$V=P$	$\begin{aligned} V & =w l \\ V_{x} & =w x \end{aligned}$
Bending Moment	$M_{\max }=\frac{P l}{4}$ (at point of load)	$\begin{gathered} M_{\max }=\frac{P a b}{l} \\ (\text { at point of load) } \end{gathered}$	$\begin{gathered} M_{1}=R_{1} a \\ \left(\max . \text { if } R_{1}>P_{1}\right) \\ M_{2}=R_{2} b \\ \left(\max . \text { if } R_{2}>P_{2}\right) \end{gathered}$	$\begin{gathered} M_{\max }=\frac{w l^{2}}{8} \\ \text { (at centre) } \end{gathered}$	$\begin{aligned} & M_{\max }=\frac{2 W l}{9 \sqrt{3}} \\ & =.1283 \mathrm{Wl} \end{aligned}$	$M_{1}=\frac{P a b^{2}}{l^{2}}$ (max. if $a<b$) $M_{2}=\frac{P b a^{2}}{l^{2}}$ (max. if $a>b$) $M_{a}=\frac{2 P b^{2} a^{2}}{l^{3}}$ (at point of load)	$M_{\max }=\frac{w l^{2}}{12}$ (at ends) $M_{1}=\frac{w l^{2}}{24}$ (at centre)	$\begin{gathered} M_{\max }=P b \\ (\text { at fixed end }) \\ M_{x}=P(x-a) \\ (\text { when } x>a) \end{gathered}$	$M_{\max }=\frac{w l^{2}}{2}$ (at fixed end) $M_{x}=\frac{w x^{2}}{2}$

